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An explicit analytic solution of tile Pauli master equation for the incoherent exciton motion m the inl]nite lincar chain wifll a 
single trap is presented. The total probability to find thc exciton in the chain is also calculatcd. 

1. Introduction 

The mot ion of excitons in the condensed pase is actively investigated in recent time ( see e.g. ref. [ 1 ]). The 
simplest one-dimensional  trapping model corresponding to the sensitized luminescence experiments uses the 
Pauli master quat ion (PME) for the probabili ty P,,(t) 1o find the exciton at site t~. 

d P , / d t = F ( P , , . ~ + P , ,  ~ - 2 P , , ) - c 6 , ~ , P , , ,  n . . . .  1.0, 1 ..... F , c > 0 ,  (1) 

where F is the intermolecular rate constant and c is the trapping rate of the trap at site H = 0. The solution of 
eq. (1) in the Laplace domain was obtained by means of the defect technique [ 1 ], howe~er, an explicit analytic 
expression for P,,( t )  has not been known till now. The aim of this work is to provide the analytic solution of 
the problem (1). 

2. ProbabiliD' propagator 

A general solution ofeq .  (1) for c = 0  is known [1 ]. It has the form 

l ' , , ( t )  ~P,,(O)~',, , ,(t) , (2 
P 

where 1'<,(0) are given initial values of the probabilit ies and 

~',,:,(t) =exp(  -21=t )1 ,  : , (2Ft)  ( 3 

is the so-called propagator i.e. the solution of the PME satist)'ing the localized initial condition 

~lz , : , ( t )=P, , ( t )  for P, , (O) -d , , : ,  (4 

and I , ( l )  is the modified Bessel function. 

The most obvious but lengthy way of calculating the propagator of eq. (1) ['or c#  0 is analogous to the well- 
known approach to the problem of the electron states in a finite one-dimensional  box. First. general solutions 
for n < 0  and n > 0  are found. In the second step, eq. (1) for n = 0  is used to match the solutions in these two 
regions. The resulting expression for ~u,,,,(l) contains coefficients which can he calculated from the initial con- 
dition (4). Instead of using this somewhat cumbersome approach we suggest a more straightforward method. 
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We search for the propagators o f  eq. (1) for c~  0. Similarly as above we require the fulfilment of  the initial 
condition (4).  First we note that except for the equation corresponding to n = 0 all the equations are the same 
as in the case c=0 .  Therefore, it is advantageous to assume the propagator for c # 0  in the form of  a linear 
combination of  the propagators (3) corresponding to c = 0 since any such linear combinat ion satisfies all n ~ 0 
equations and only one n = 0 equation has to be solved. To be more concrete we assume the propagator of  eq. 
(1) in the form of  a linear combinat ion of  the propagators (3) 

~ p ( t ) = e x p ( - 2 F t ) [ I n  p(2Ft )+ /= l  ~ a / 'p l l l+ '~ ' (2F t ) ]  " (5) 

This formula requires more detailed explanation. The first term in eq. (5) gives the propagator (3) corre- 
sponding to c = 0  whilst the rest takes into account the effect of  the trap. The first term is chosen in such a way 
that it guarantees the fulfilment of  the correct initial condition (4) assuming the second term is zero at t =  0. 
Taking into account the last condition and the property of  the Bessel functions In(0) =~no we get l=  1, 2, ... 
Further we note that except for the initial condition (4) the PME (1) is symmetric with respect to n - - . -  n. 
The initial condition is fulfilled by the first term so that we may assume that the sum in eq. (5) is a symmetric 
function o f  n and p. This leads to I n I and I Pl in eq. (5). We note also that eq. (5) is a special case of  the 
Neumann series [2] 

~u,(t) = e x p ( - 2 F t )  ~ a/I/+~(t) . (6) 
/ 

Now we substitute expression (5) into eq. (1) for n = 0 and compare the coefficients before the Bessel func- 
tions of  the same order. The resulting system of the reccurent relations for az~t, ~ 

a21p I = - -  (d/F)~olpl , a21pl = - - ( c / F ) a u l p l  - (c /F)c~]rp  I , 

a/+ ~.l~,l = - (c/F)al.lpr +a/_  ~,lpl - (c/F)c~l.lm , l~> 2 ,  (7) 

is easily solvable with the result 

a/ipl = - ( c / F ) ( - i ) / - I P l - ~  Ul irl u(ic/2F) . (8) 

Here, the U's denote the analytic continuation of  the Chebyshev polynomials of  the second kind defined by 
therelations 

Uo(x) = 1 , U , ( x ) = 2 x ,  U , , + ~ ( x ) = 2 x U , , ( x ) - U ,  , ( x ) ,  (9) 

for an arbitrary complex argument. Using the relation (8) in eq. (5) we get the propagator of  the PME (1) 
in the form 

~,,,p(t) = e x p ( - 2 F t )  I,, p ( 2 F t ) - F , ~ o  iJUj(ic/2F)Ilnl  ÷ Ipn+,+ ~(2Ft) . (10) 

Eq. (10) has a simple physical meaning. The first term on the right-hand side is the same as in the case of  
the chain without the trap ( c = 0 ) .  The second term results from the presence of  the trap and, in contrast to 
the first one, it is not translationally invariant. It is a function of  I nl + IPl i.e. the total distance from the initial 
excitation site p to the trap and from the trap to site n where the probability to find the exciton is calculated. 

The expression (10) is not suitable for the numerical calculations for c /F>  1. It has the following reason. 
Using the separation of  variables 

P~(t)  = exp(2t)c,, (11 ) 

the stationary problem corresponding to eq. (1) is 

2c , ,=F(c , , .~  +c~_~-2c , , ) -c (SnoC, ,  . (12) 
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The propagator  corresponding to eq. ( 1 ) can be expressed in the form of  a l inear cominat ion  of  the states ( 1 I ) 

~t,,~,(t) = ~ c,,(2)c~,(2) exp()J )  . ( 1 3 ) 
t 

Here, ~> denotes the summat ion  over all the states. Detai led analysis of  the difference equation (12) (see also 
ref. [3])  gives the band of  the extended states and one localized state existing for any c #  0. The extended states 
corresponding to 

) .=2F(cosO-1) .  Oe(O,~) (14) 

are symmetr ic  (c,; = c " ,, ) 
1.2 

c,i = ~ l ~ 4 F 2 s i n ~  0 c o s n 0 ~  

or an t i symmetr ic  ( c , ,  = - c .  ) 

c,, - -~ l.e s i n ( n 0 ) .  (16) 

The localized state equals 

c , ,= ( tgh ; , )  ~ : [ s g n ( - c / F )  exp( ~')] " (17) 

where 

=ln') I c/2FI + [ 1 + (c /2F)  2 ] 12  , ( 1 8  ) 

and 

z = - - 2 F ( l + c o s h T ) .  (19) 

Subst i tut ing expressions ( 14 ) - (19 )  into eq. 13 ) we get another  formula %r the propagator.  It is not necessar}. 
however, to evaluate (13). We note only that the localized state contr ibut ion to the propagator  is expanded 
in eq. (10) in terms of  the delocal ized Bessel functions. The highly localized state (7 large or c/F >> 1 ) has to 
be expanded into a large number  of  Bessel functions yielding troubles with the numerical  evaluat ion of  the 
series. It is therefore desirable to write the localized and extended state contr ibut ions  to eq. (10) separately. 
Adding and subtract ing the localized state contr ibut ion  to eq. (10) we get after some calculation an equivalent  
form of  the propagator  

~,,,,(t) = e x p ( - 2 F t )  t a n h ( 7 ) [ s g n ( - c / F )  exp( - 7 ) ]  . . . . .  ,,i exp [2F t  s g n ( - - c / F )  cosh ~,] 

+exp(-2Ft)(l , ,  , , (2Ft)  tanh(}')[sgn( - ( ' /F) e x p ( - - ; ' ) ] i "  , :,, 

i , I  ' Ii'l ~, 

/ K (2 6 ~)[sgn(-c/F)] ~ cosh(kT)l~(2Ft)). (20) 
i' ( 

Expression (20) is another  decompos i t ion  of  the propagator  (10). The first term is the localized state con- 
t r ibut ion while the rest represents the delocal ized state part.  We see that the localized state contr ibut ion goes 
exponent ia l ly  down with increasing I n I and IPl. The numerical  calculation of  the propagator  from eq. (20) 
for any c/F makes no difficulty. 

Fig. 1 il lustrates the effect of  the trap at site n = 0  on the probabi l i t ies  to find the excilon at sites n=O, 1 and 
2 assuming the initial exci tat ion at the trap site ( p = 0 ) .  In the case of  the existence of  the trap ( c # 0 )  the 
probabi l i t ies  are lower than for c =  0. Fig. 2 shows that the effect of  the trap on the probabi l i t ies  goes down 
wit the increasing dis tance of  the trap and the initial excitat ion site p. 
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Fig. 1. The propagator qJ,,~,(t) forp= 0, n=0,  1, 2, c=Fas  a func- 
tion of time (full line). The dashed line corresponds to c = 0 (no 
trap). 

Fig. 2. The propagator q/,,p(t) for p= 1, n = 0, 1, 2, c = F as a func- 
tion of time (full line). The dashed line corresponds to c=0 (no 
trap). 

T h e  effect  o f  the  t r ap  o n  t he  to ta l  p r o b a b i l i t y  to  f i nd  the  exc i t on  in the  c h a i n  can  be  f o u n d  f r o m  the  e q u a u o n  

d ~ P~=-cPo , ( 2 1 )  

s h o w i n g  t h a t  

~ P n - - * 0  for  t--,oo f o r a n y c > 0 .  ( 2 2 )  
t t  

Eq. ( 2 2 )  c an  be  r e d u c e d  to t he  e q u a t i o n  for  t he  p r o p a g a t o r s  

d 
~, ,p( t )  = -C~'op(t). ( 2 3 )  

d-~ 

S u b s t i t u t i n g  the  p r o p a g a t o r  (10)  i n to  eq. ( 2 3 )  a n d  p e r f o r m i n g  the  i n t e g r a t i o n  we get 
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Fig. 3. The total probability Y,,~,w(t) to find the exciton in the 
chain for t= 10F ~, p=0  as a function ofc/F. 
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Fig. 4. The total probability ~,,q/,,p(t) to find the exction in the 
chain for p=0,  1, 2, 3, 4, 5 and 10 as a function of time. c=F. 
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~ / , , : , ( t ) = l  c ( c' ~ ) ,, 2F  g i : ' l ( 2 F t ) - b ~ , ~  i:U'(ic/2F)&:'l  ' ' '  , (2F t )  , (24) 

where 

, , ,  i 

g , , ( t )= te  ' [ l o ( t ) + l , ( t ) ] + p [ e  ' L , ( t ) - l ] + 2 e  ,' V (p k ) l a ( t ) ,  t251 
/, I 

Similarly to eq. (10) formula  (24)  is suitable for the numerical  calculat ions for elF< I. More complex expres- 
sion appl icable  for any c/F can be der ived from eq. (20).  

Fig. 3 shows the total  probabi l i ty  to f ind the exeiton in the chain at t ime t l OF ~ lor  the initial excitat ion 
at the trap site ( p = 0 )  as a function of  c/F. Increasing the trap constant  c the total probabi l i ty  goes quickly 
down. Fig. 4 shows the decreasing effect of  the trap on the total probabi l i ty  with the increasing dis tance of  the 
initial exci tat ion site p from the trap. For  p=O, the initial  exci tat ion is at the trap so that the total probabi l i ty  
goes at first quickly down. Increasing t ime, the exciton becomes delocalized, the effect of  the t rap on the de- 
localized exciton is small and the decrease o f  the total  probabi l i ty  is slower. For large p, the initially localized 
excitat ion needs some t ime to reach the trap so that the total probabi l i ty  is close to 1 at the beginning. In- 
creasing t ime it goes slowly down. 

3. Conclusion 

The probabi l i ty  propagator  for the incoherent  exciton mot ion  in the infinite l inear chain with a single trap 
has been analyt ical ly calculated. Two analytic expressions for the propagator  have been given. In the first case 
the propagator  is wri t ten as the propagator  for the chain without  the t rap plus the part resulting from the ex- 
istence of  the t rap while in the second case the propagator  is decomposed  into the localized and extended states 
parts. The localized state contr ibut ion i.e. the effect of  the trap goes exponent ia l ly  down with the increasing 
distances I nl and IPl from the trap. The analyt ic  expression for the total probabi l i ty  to find the exciton in the 
chain has also been given. 
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