Internal structure of the Heisenberg and Robertson-Schrödinger uncertainty relations: Multidimensional generalization

L. Skála
Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague 2, Czech Republic

(Received 20 August 2013; published 24 October 2013)

Abstract

It is known that the Heisenberg and Robertson-Schrödinger uncertainty relations can be replaced by sharper relations in which the "classical" (depending on the gradient of the phase of the wave function) and "quantum" (depending on the gradient of the envelope of the wave function) parts of the variances $\left\langle(\Delta x)^{2}\right\rangle$ and $\left\langle(\Delta p)^{2}\right\rangle$ are separated. In this paper, multidimensional generalization of these relations is discussed.

DOI: 10.1103/PhysRevA.88.042118
PACS number(s): 03.65.Ca, 03.65.Ta

I. INTRODUCTION

The Heisenberg uncertainty relation for the coordinate x and momentum p has the well-known form [1]

$$
\begin{equation*}
\left\langle(\Delta x)^{2}\right\rangle\left\langle(\Delta p)^{2}\right\rangle \geqslant \frac{\hbar^{2}}{4} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \left\langle(\Delta x)^{2}\right\rangle=\int_{-\infty}^{\infty}(x-\langle x\rangle)^{2}|\psi|^{2} d x \tag{2}\\
& \left\langle(\Delta p)^{2}\right\rangle=\int_{-\infty}^{\infty}|(p-\langle p\rangle) \psi|^{2} d x \tag{3}
\end{align*}
$$

$\psi=\psi(x, t)$ is the normalized wave function, $p=-i \hbar(\partial / \partial x)$,〈〉 denotes the usual quantum-mechanical mean value, and \hbar is the reduced Planck constant $\hbar=h /(2 \pi)$.

The Robertson-Schrödinger uncertainty relation for the coordinate and momentum has the form [2-6]

$$
\begin{align*}
& \left\langle(\Delta x)^{2}\right\rangle\left\langle(\Delta p)^{2}\right\rangle \\
& \quad \geqslant\left[\int_{-\infty}^{\infty}(x-\langle x\rangle)\left(\frac{\partial s_{1}}{\partial x}-\left\langle\frac{\partial s_{1}}{\partial x}\right\rangle\right)|\psi|^{2} d x\right]^{2}+\frac{\hbar^{2}}{4} . \tag{4}
\end{align*}
$$

The Heisenberg relation can be obtained from this relation by neglecting the square of the integral at the right-hand side.

For recent discussion of uncertainty relations see, e.g., [7-22].

It is known that the Heisenberg uncertainty relation and also the Robertson-Schrödinger uncertainty relation can be replaced by a pair of sharper relations in which the "classical" (depending on the gradient of the phase of the wave function) and "quantum" (depending on the gradient of the envelope of the wave function) parts of the variances of the coordinate $\left\langle(\Delta x)^{2}\right\rangle$ and momentum $\left\langle(\Delta p)^{2}\right\rangle$ are separated [5,6,23-27]. This separation is based on the following idea.

The normalized wave function ψ can be always written in terms of its modulus and argument (phase):

$$
\begin{equation*}
\psi=|\psi| e^{i \arg (\psi)}=e^{-s_{2} / \hbar} e^{i s_{1} / \hbar} \tag{5}
\end{equation*}
$$

where $s_{1}(x, t)$ and $s_{2}(x, t)$ are real functions. Then we get

$$
\begin{equation*}
p \psi=\frac{\partial s_{1}}{\partial x} \psi+i \frac{\partial s_{2}}{\partial x} \psi . \tag{6}
\end{equation*}
$$

The mean momentum can be written as

$$
\begin{equation*}
\langle p\rangle=\langle\psi \mid p \psi\rangle=\int_{-\infty}^{\infty} \frac{\partial s_{1}}{\partial x}|\psi|^{2} d x+i \int_{-\infty}^{\infty} \frac{\partial s_{2}}{\partial x}|\psi|^{2} d x \tag{7}
\end{equation*}
$$

Assuming the wave functions with the property $|\psi|^{2} \rightarrow 0$ for $x \rightarrow \infty$, the second integral in Eq. (7) does not contribute to the mean momentum:

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{\partial s_{2}}{\partial x}|\psi|^{2} d x & =-\frac{\hbar}{2} \int_{-\infty}^{\infty} \frac{\partial}{\partial x} e^{-2 s_{2} / \hbar} d x=-\left.\frac{\hbar}{2} e^{-2 s_{2} / \hbar}\right|_{x=-\infty} ^{\infty} \\
& =0 \tag{8}
\end{align*}
$$

Therefore, the resulting expression for the mean momentum [5,6,24-27]

$$
\begin{equation*}
\langle p\rangle=\int_{-\infty}^{\infty} \frac{\partial s_{1}}{\partial x}|\psi|^{2} d x \tag{9}
\end{equation*}
$$

does not depend on $\partial s_{2} / \partial x$. This formula corresponds to the transition from the point particle in classical mechanics where the probability density has the δ-like character to the particle described by the probability density $|\psi|^{2}$ in quantum mechanics. At the same time, the expression for the classical momentum $p_{\mathrm{cl}}=\partial S / \partial x$, where S is the Hamilton action, is replaced here by the mean value $\langle p\rangle=\left\langle\partial s_{1} / \partial x\right\rangle$, where the function s_{1} corresponds to S and the probability density $|\psi|^{2}$ is introduced.

It follows from Eq. (6) that the mean value $\left\langle p^{2}\right\rangle$ can be written as a sum of two parts [5,26,27]:

$$
\begin{equation*}
\left\langle p^{2}\right\rangle=\langle p \psi \mid p \psi\rangle=\left\langle p_{1}^{2}\right\rangle+\left\langle p_{2}^{2}\right\rangle \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle p_{1}^{2}\right\rangle=\int_{-\infty}^{\infty}\left(\frac{\partial s_{1}}{\partial x}\right)^{2}|\psi|^{2} d x \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle p_{2}^{2}\right\rangle=\int_{-\infty}^{\infty}\left(\frac{\partial s_{2}}{\partial x}\right)^{2}|\psi|^{2} d x \tag{12}
\end{equation*}
$$

The first part $\left\langle p_{1}^{2}\right\rangle$ that can be denoted as "classical" is statistical generalization of the expression $p_{c l}^{2}=(\partial S / \partial x)^{2}$ from classical mechanics, in which the classical momentum $p_{\mathrm{cl}}=\partial S / \partial x$ is replaced by $\partial s_{1} / \partial x$ and the probability density $|\psi|^{2}$ is introduced. The second "quantum" part $\left\langle p_{2}^{2}\right\rangle$ is given by $|\psi|^{2}$ or the envelope of the wave function $|\psi|=\exp \left(-s_{2} / \hbar\right)$ and its derivative. It does not depend on $\partial s_{1} / \partial x$ and does not have its counterpart in classical mechanics.

Such separation applies not only for $\left\langle p^{2}\right\rangle$ and kinetic energy but also for the variance $\left\langle(\Delta p)^{2}\right\rangle$ appearing in the Heisenberg
uncertainty relation [5,26,27]:

$$
\begin{equation*}
\left\langle(\Delta p)^{2}\right\rangle=\left\langle(p-\langle p\rangle)^{2}\right\rangle=\left\langle\left(\Delta p_{1}\right)^{2}\right\rangle+\left\langle\left(\Delta p_{2}\right)^{2}\right\rangle \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
\left\langle\left(\Delta p_{1}\right)^{2}\right\rangle & =\int_{-\infty}^{\infty}\left(\frac{\partial s_{1}}{\partial x}-\left\langle\frac{\partial s_{1}}{\partial x}\right\rangle\right)^{2}|\psi|^{2} d x \tag{14}\\
\left\langle\left(\Delta p_{2}\right)^{2}\right\rangle & =\int_{-\infty}^{\infty}\left(\frac{\partial s_{2}}{\partial x}-\left\langle\frac{\partial s_{2}}{\partial x}\right\rangle\right)^{2}|\psi|^{2} d x \\
& =\int_{-\infty}^{\infty}\left(\frac{\partial s_{2}}{\partial x}\right)^{2}|\psi|^{2} d x \tag{15}
\end{align*}
$$

and Eq. (8) is used.
Using the Schwarz inequality, a few pairs of the onedimensional uncertainty relations for a different number of classical and quantum parts of $\left.(\Delta x)^{2}\right\rangle$ and $\left\langle(\Delta p)^{2}\right\rangle$ were derived [6]. In this paper, their multidimensional generalization is discussed.

II. MULTIDIMENSIONAL GENERALIZATION OF THE ROBERTSON-SCHRÖDINGER UNCERTAINTY RELATION

Now, we consider the N-dimensional case with the wave function depending on N spatial variables $\psi=\psi(\mathbf{x}, t), \mathbf{x}=$ $\left(x_{1}, \ldots, x_{N}\right)$.

In the multidimensional case, the variance $\left\langle(\Delta x)^{2}\right\rangle$ in the Heisenberg uncertainty relation [Eq. (1)] can be generalized to a $N \times N$ matrix:

$$
\begin{align*}
\left\langle(\Delta X)^{2}\right\rangle_{m n} & =\int\left(x_{m}-\left\langle x_{m}\right\rangle\right)\left(x_{n}-\left\langle x_{n}\right\rangle\right)|\psi|^{2} d \xi \\
m, n & =1, \ldots, N \tag{16}
\end{align*}
$$

where $d \xi=d x_{1} \ldots d x_{N}$ and integration is performed over the whole space. By calculating

$$
\begin{equation*}
\sum_{m, n=1}^{N} c_{m}^{*}\left\langle(\Delta X)^{2}\right\rangle_{m n} c_{n}=\int\left|\sum_{m=1}^{N} c_{m}\left(x_{m}-\left\langle x_{m}\right\rangle\right)\right|^{2}|\psi|^{2} d \xi \geqslant 0 \tag{17}
\end{equation*}
$$

where c_{m} are complex numbers and the star denotes the complex conjugate, we see that the matrix $\left\langle(\Delta X)^{2}\right\rangle$ is positive semidefinite.

Analogously, Eqs. (13)-(15) can be generalized as
$\left\langle(\Delta P)^{2}\right\rangle_{m n}=\left\langle\left(\Delta P_{1}\right)^{2}\right\rangle_{m n}+\left\langle\left(\Delta P_{2}\right)^{2}\right\rangle_{m n}, \quad m, n=1, \ldots, N$,
where
$\left\langle\left(\Delta P_{1}\right)^{2}\right\rangle_{m n}=\int\left(\frac{\partial s_{1}}{\partial x_{m}}-\left\langle\frac{\partial s_{1}}{\partial x_{m}}\right\rangle\right)\left(\frac{\partial s_{1}}{\partial x_{n}}-\left\langle\frac{\partial s_{1}}{\partial x_{n}}\right\rangle\right)|\psi|^{2} d \xi$
is the classical part of $\left\langle(\Delta P)^{2}\right\rangle$ and

$$
\begin{equation*}
\left\langle\left(\Delta P_{2}\right)^{2}\right\rangle_{m n}=\int \frac{\partial s_{2}}{\partial x_{m}} \frac{\partial s_{2}}{\partial x_{n}}|\psi|^{2} d \xi \tag{20}
\end{equation*}
$$

is the quantum part of $\left\langle(\Delta P)^{2}\right\rangle$. Using similar arguments as in the preceding paragraph, it can be shown that the matrices $\left\langle\left(\Delta P_{1}\right)^{2}\right\rangle$ and $\left\langle\left(\Delta P_{2}\right)^{2}\right\rangle$ are positive semidefinite, too.

Following the idea formulated in Eq. (6) we define a correlation matrix G among the coordinates and momentum:

$$
\begin{align*}
G_{m n} & =\int\left(x_{m}-\left\langle x_{m}\right\rangle\right)\left(\frac{\partial s_{1}}{\partial x_{n}}-\left\langle\frac{\partial s_{1}}{\partial x_{n}}\right\rangle+i \frac{\partial s_{2}}{\partial x_{n}}\right)|\psi|^{2} d \xi \\
m, n & =1, \ldots, N \tag{21}
\end{align*}
$$

Using the expression $|\psi|^{2}=\exp \left(-2 s_{2} / \hbar\right)$, integration by parts, and assuming validity of the conditions $|\psi|^{2} \rightarrow 0$ and $x_{m}|\psi|^{2} \rightarrow 0$ for $x_{m} \rightarrow \pm \infty$ we get [23]

$$
\begin{equation*}
\int\left(x_{m}-\left\langle x_{m}\right\rangle\right) \frac{\partial s_{2}}{\partial x_{n}}|\psi|^{2} d \xi=\frac{\hbar}{2} \delta_{m n} \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
G_{m n} & =\int\left(x_{m}-\left\langle x_{m}\right\rangle\right)\left(\frac{\partial s_{1}}{\partial x_{n}}-\left\langle\frac{\partial s_{1}}{\partial x_{n}}\right\rangle\right)|\psi|^{2} d \xi+i \frac{\hbar}{2} \delta_{m n} \\
m, n & =1, \ldots, N \tag{23}
\end{align*}
$$

Then, we create a matrix M of the order $2 N$:

$$
M=\left(\begin{array}{cc}
(\Delta X)^{2} & G \tag{24}\\
G^{+} & (\Delta P)^{2}
\end{array}\right)
$$

where the cross denotes the Hermitian conjugation.
To show that also the matrix M is positive semidefinite we define quantities f_{m} :

$$
\begin{align*}
f_{m} & =x_{m}-\left\langle x_{m}\right\rangle, \quad f_{N+m}=\frac{\partial s_{1}}{\partial x_{m}}-\left\langle\frac{\partial s_{1}}{\partial x_{m}}\right\rangle+i \frac{\partial s_{2}}{\partial x_{m}} \\
m & =1, \ldots, N \tag{25}
\end{align*}
$$

By analogy with Eq. (17) we get

$$
\begin{equation*}
\sum_{m, n=1}^{2 N} c_{m}^{*} M_{m n} c_{n}=\int\left|\sum_{m=1}^{2 N} c_{m} f_{m}\right|^{2}|\psi|^{2} d \xi \geqslant 0 \tag{26}
\end{equation*}
$$

and see that the matrix M is positive semidefinite, too.
Further, we make use of a general result valid for $N \times N$ matrices A, B, C, and D, where D is a regular matrix [23]:

$$
\left(\begin{array}{cc}
1 & -B D^{-1} \tag{27}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
C & D
\end{array}\right)
$$

leading to

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \tag{28}\\
C & D
\end{array}\right)=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det}(D)
$$

Applying this result to the matrix M given by Eq. (24) we get the multidimensional uncertainty relation for $(\Delta X)^{2}$ and $(\Delta P)^{2}$:

$$
\begin{equation*}
\operatorname{det}\left\{(\Delta X)^{2}(\Delta P)^{2}-G\left[(\Delta P)^{2}\right]^{-1} G^{+}(\Delta P)^{2}\right\} \geqslant 0 \tag{29}
\end{equation*}
$$

This relation is the multidimensional generalization of the Robertson-Schrödinger uncertainty relation [Eq. (4)].

III. RELATIONS FOR THE QUANTUM AND CLASSICAL PARTS OF THE MOMENTUM

First, we take the matrix M in the form

$$
M=\left(\begin{array}{cc}
(\Delta X)^{2} & G \tag{30}\\
G^{+} & \left(\Delta P_{1}\right)^{2}
\end{array}\right)
$$

where

$$
\begin{align*}
G_{m n} & =\int\left(x_{m}-\left\langle x_{m}\right\rangle\right)\left(\frac{\partial s_{1}}{\partial x_{n}}-\left\langle\frac{\partial s_{1}}{\partial x_{n}}\right\rangle\right)|\psi|^{2} d \xi \\
m, n & =1, \ldots, N \tag{31}
\end{align*}
$$

Applying Eq. (28) to the matrix M given by Eq. (30) we get the multidimensional relation for $(\Delta X)^{2}$ and the classical part $\left(\Delta P_{1}\right)^{2}$ [23]:

$$
\begin{equation*}
\operatorname{det}\left\{(\Delta X)^{2}\left(\Delta P_{1}\right)^{2}-G\left[\left(\Delta P_{1}\right)^{2}\right]^{-1} G^{+}\left(\Delta P_{1}\right)^{2}\right\} \geqslant 0 \tag{32}
\end{equation*}
$$

For $N=1$, the one-dimensional relation for $\left\langle(\Delta x)^{2}\right\rangle$ and the classical part $\left\langle\left(\Delta p_{1}\right)^{2}\right\rangle$ is obtained [23]:

$$
\begin{align*}
& \left\langle(\Delta x)^{2}\right\rangle\left\langle\left(\Delta p_{1}\right)^{2}\right\rangle \\
& \quad \geqslant\left[\int_{-\infty}^{\infty}(x-\langle x\rangle)\left(\frac{\partial s_{1}}{\partial x}-\left\langle\frac{\partial s_{1}}{\partial x}\right\rangle\right)|\psi|^{2} d x\right]^{2} \tag{33}
\end{align*}
$$

This relation has the usual meaning known from mathematical statistics: The product of variances of two quantities is greater than or equal to the square of their covariance. Depending on the functions $\partial s_{1} / \partial x$ and $|\psi|^{2}$, the square of the covariance of the coordinate and momentum at the right-hand side of this relation can have arbitrary values greater than or equal to zero. If the right-hand side of Eq. (33) equals zero, any of the quantities $\left\langle(\Delta x)^{2}\right\rangle$ and $\left\langle\left(\Delta p_{1}\right)^{2}\right\rangle$ can equal zero independently of the other one. In this sense, this inequality has classical character and is different from the Heisenberg and RobertsonSchrödinger uncertainty relations. Interpretation of Eq. (32) is analogous.

Taking the matrix M in the form

$$
M=\left(\begin{array}{cc}
(\Delta X)^{2} & G \tag{34}\\
G^{+} & \left(\Delta P_{2}\right)^{2}
\end{array}\right),
$$

where

$$
\begin{align*}
G_{m n} & =i \int\left(x_{m}-\left\langle x_{m}\right\rangle\right) \frac{\partial s_{2}}{\partial x_{n}}|\psi|^{2} d \xi=i \frac{\hbar}{2} \delta_{m n} \\
m, n & =1, \ldots, N \tag{35}
\end{align*}
$$

we obtain the multidimensional uncertainty relation for $(\Delta X)^{2}$ and the quantum part $\left(\Delta P_{2}\right)^{2}$ [23]:

$$
\begin{equation*}
\operatorname{det}\left\{(\Delta X)^{2}\left(\Delta P_{2}\right)^{2}-\frac{\hbar^{2}}{4}\right\} \geqslant 0 \tag{36}
\end{equation*}
$$

For $N=1$, the one-dimensional uncertainty relation for $\left\langle(\Delta x)^{2}\right\rangle$ and the quantum part $\left\langle\left(\Delta p_{2}\right)^{2}\right\rangle$ is [23]

$$
\begin{equation*}
\left\langle(\Delta x)^{2}\right\rangle\left\langle\left(\Delta p_{2}\right)^{2}\right\rangle \geqslant \frac{\hbar^{2}}{4} \tag{37}
\end{equation*}
$$

Similarly to Eq. (33), this relation can be understood as the standard statistical inequality, too. However, the right-hand side of Eq. (37) equals $\hbar^{2} / 4$ and does not depend on the concrete form of the functions s_{1} and s_{2}. Similarly to the Heisenberg uncertainty relation, the left-hand side of this relation cannot be smaller than $\hbar^{2} / 4$. In contrast to Eq. (33), the left-hand side of Eq. (37) does not depend on s_{1} and depends only on the envelope $|\psi|=\exp \left(-s_{2} / \hbar\right)$ of the wave function ψ and its derivative. In this sense, Eq. (37) and also Eq. (36) have quantum character.

The sum of Eqs. (33) and (37) leads to the RobertsonSchrödinger uncertainty relation [Eq. (4)]. Therefore, the pair of Eqs. (33) and (37) is sharper than Eqs. (1) and (4).

IV. RELATIONS FOR THE QUANTUM AND CLASSICAL PARTS OF THE COORDINATE

An analogous approach can be used also for the wave function in the momentum representation. By analogy with the coordinate representation, we consider the N-dimensional case with the wave function in the momentum representation $\varphi=\varphi(\mathbf{p}, t)$, where $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$.

The wave function

$$
\begin{equation*}
\varphi(\mathbf{p}, t)=\frac{1}{(2 \pi \hbar)^{N / 2}} \int \psi(\mathbf{x}, t) e^{\mathbf{p} \cdot \mathbf{x} /(i \hbar)} d \xi \tag{38}
\end{equation*}
$$

can be written in the form analogous to Eq. (5):

$$
\begin{equation*}
\varphi(\mathbf{p}, t)=e^{-r_{2} / \hbar} e^{i r_{1} / \hbar} \tag{39}
\end{equation*}
$$

where $r_{1}(\mathbf{p}, t)$ and $r_{2}(\mathbf{p}, t)$ are real functions.
Analogously to the preceding section we define the matrix $\left\langle(\Delta P)^{2}\right\rangle$ in the momentum representation:

$$
\begin{equation*}
\left\langle(\Delta P)^{2}\right\rangle_{m n}=\int\left(p_{m}-\left\langle p_{m}\right\rangle\right)\left(p_{n}-\left\langle p_{n}\right\rangle\right)|\varphi|^{2} d \tau \tag{40}
\end{equation*}
$$

where $d \tau=d p_{1} \ldots d p_{N}$ and integration is performed over the whole space. Using the coordinate operator $x_{m}=i \hbar\left(\partial / \partial p_{m}\right)$ it is possible to derive equations analogous to Eqs. (18)-(20):

$$
\begin{align*}
\left\langle(\Delta X)^{2}\right\rangle_{m n} & =\left\langle\left(\Delta X_{1}\right)^{2}\right\rangle_{m n}+\left\langle\left(\Delta X_{2}\right)^{2}\right\rangle_{m n}, \\
m, n & =1, \ldots, N, \tag{41}
\end{align*}
$$

where

$$
\begin{equation*}
\left\langle\left(\Delta X_{1}\right)^{2}\right\rangle_{m n}=\int\left(\frac{\partial r_{1}}{\partial p_{m}}-\left\langle\frac{\partial r_{1}}{\partial p_{m}}\right\rangle\right)\left(\frac{\partial r_{1}}{\partial p_{n}}-\left\langle\frac{\partial r_{1}}{\partial p_{n}}\right\rangle\right)|\varphi|^{2} d \tau \tag{42}
\end{equation*}
$$

is the classical part of $\left\langle(\Delta X)^{2}\right\rangle$ and

$$
\begin{equation*}
\left\langle\left(\Delta X_{2}\right)^{2}\right\rangle_{m n}=\int \frac{\partial r_{2}}{\partial p_{m}} \frac{\partial r_{2}}{\partial p_{n}}|\varphi|^{2} d \tau \tag{43}
\end{equation*}
$$

is the quantum part of $\left\langle(\Delta X)^{2}\right\rangle$.
Assuming the matrix M in the form

$$
M=\left(\begin{array}{cc}
(\Delta P)^{2} & G \tag{44}\\
G^{+} & \left(\Delta X_{1}\right)^{2}
\end{array}\right)
$$

where

$$
\begin{align*}
G_{m n} & =-\int\left(p_{m}-\left\langle p_{m}\right\rangle\right)\left(\frac{\partial r_{1}}{\partial p_{n}}-\left\langle\frac{\partial r_{1}}{\partial p_{n}}\right\rangle\right)|\varphi|^{2} d \tau \\
m, n & =1, \ldots, N \tag{45}
\end{align*}
$$

and using Eq. (28) we obtain the multidimensional relation for $\left\langle(\Delta P)^{2}\right\rangle$ and the classical part $\left\langle\left(\Delta X_{1}\right)^{2}\right\rangle$:

$$
\begin{equation*}
\operatorname{det}\left\{(\Delta P)^{2}\left(\Delta X_{1}\right)^{2}-G\left[\left(\Delta X_{1}\right)^{2}\right]^{-1} G^{+}\left(\Delta X_{1}\right)^{2}\right\} \geqslant 0 \tag{46}
\end{equation*}
$$

For $N=1$, it leads to the one-dimensional relation for $\left\langle(\Delta p)^{2}\right\rangle$ and $\left\langle\left(\Delta x_{1}\right)^{2}\right\rangle[6]$:

$$
\begin{align*}
& \left\langle(\Delta p)^{2}\right\rangle\left\langle\left(\Delta x_{1}\right)^{2}\right\rangle \\
& \quad \geqslant\left[\int_{-\infty}^{\infty}(p-\langle p\rangle)\left(\frac{\partial r_{1}}{\partial x}-\left\langle\frac{\partial r_{1}}{\partial x}\right\rangle\right)|\varphi|^{2} d p\right]^{2} . \tag{47}
\end{align*}
$$

Taking the matrix M in the form

$$
M=\left(\begin{array}{cc}
(\Delta P)^{2} & G \tag{48}\\
G^{+} & \left(\Delta X_{2}\right)^{2}
\end{array}\right)
$$

where

$$
\begin{align*}
G_{m n} & =-i \int\left(p_{m}-\left\langle p_{m}\right\rangle\right) \frac{\partial r_{2}}{\partial p_{n}}|\varphi|^{2} d \tau=-i \frac{\hbar}{2} \delta_{m n} \\
m, n & =1, \ldots, N \tag{49}
\end{align*}
$$

we obtain the multidimensional uncertainty relation for $(\Delta P)^{2}$ and the quantum part $\left(\Delta X_{2}\right)^{2}$:

$$
\begin{equation*}
\operatorname{det}\left\{(\Delta P)^{2}\left(\Delta X_{2}\right)^{2}-\frac{\hbar^{2}}{4}\right\} \geqslant 0 \tag{50}
\end{equation*}
$$

For $N=1$, the one-dimensional uncertainty relation for $\left\langle(\Delta p)^{2}\right\rangle$ and the quantum part $\left\langle\left(\Delta x_{2}\right)^{2}\right\rangle$ is [6]

$$
\begin{equation*}
\left\langle\left(\Delta p^{2}\right\rangle\left\langle\left(\Delta x_{2}\right)^{2}\right\rangle \geqslant \frac{\hbar^{2}}{4}\right. \tag{51}
\end{equation*}
$$

Comments on these relations can be made as in the preceding section and will not be given here.

V. RELATION FOR THE QUANTUM PARTS OF THE COORDINATE AND MOMENTUM

It has been shown in the preceding sections that matrices $(\Delta X)^{2}=\left(\Delta X_{1}\right)^{2}+\left(\Delta X_{2}\right)^{2}$ and $(\Delta P)^{2}=\left(\Delta P_{1}\right)^{2}+\left(\Delta P_{2}\right)^{2}$ can be written as a sum of two matrices having classical and quantum character. Now we ask if it is possible to derive some relation for quantum parts $\left(\Delta X_{2}\right)^{2}$ and $\left(\Delta P_{2}\right)^{2}$ only, without the presence of matrices $\left(\Delta X_{1}\right)^{2}$ and $\left(\Delta P_{1}\right)^{2}$. Such relation is discussed in this section.

For this aim, we take the matrix M in the form

$$
M=\left(\begin{array}{cc}
\left(\Delta X_{2}\right)^{2} & G \tag{52}\\
G^{+} & \left(\Delta P_{2}\right)^{2}
\end{array}\right)
$$

where

$$
\begin{align*}
G_{m n} & =\frac{1}{(2 \pi \hbar)^{N / 2}} \iint \frac{\partial r_{2}}{\partial p_{m}}|\varphi| e^{-\mathbf{p} \cdot \mathbf{x} /(i \hbar)} \frac{\partial s_{2}}{\partial x_{n}}|\psi| d \xi d \tau \tag{53}\\
& =\frac{\hbar^{2}}{(2 \pi \hbar)^{N / 2}} \iint \frac{\partial|\varphi|}{\partial p_{m}} e^{-\mathbf{p} \cdot \mathbf{x} /(i \hbar)} \frac{\partial|\psi|}{\partial x_{n}} d \xi d \tau \\
m, n & =1, \ldots, N
\end{align*}
$$

Then, Eq. (28) yields the relation for the quantum parts of $(\Delta X)^{2}$ and $(\Delta P)^{2}$:

$$
\begin{equation*}
\operatorname{det}\left\{\left(\Delta X_{2}\right)^{2}\left(\Delta P_{2}\right)^{2}-G\left[\left(\Delta P_{2}\right)^{2}\right]^{-1} G^{+}\left(\Delta P_{2}\right)^{2}\right\} \geqslant 0 \tag{54}
\end{equation*}
$$

If the wave functions ψ and φ depend on time, all quantities in this relation may be time dependent. For this reason, we do not denote Eq. (54) as an uncertainty relation but as a relation or an inequality.

The wave functions ψ and φ are related by the Fourier transform. In contrast, this is not generally the case for their envelopes $|\psi|$ and $|\varphi|$. For this reason, Eq. (54) has different character than other uncertainty relations discussed in this paper and can lead to interesting results (for detailed discussion in the one-dimensional case see [6]).

For $N=1$, Eq. (54) becomes

$$
\begin{equation*}
\left\langle\left(\Delta x_{2}\right)^{2}\right\rangle\left\langle\left(\Delta p_{2}\right)^{2}\right\rangle \geqslant \hbar^{2}|I|^{2} \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
I=\hbar \int_{-\infty}^{\infty} \frac{\partial|\psi|}{\partial x} \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \frac{\partial|\varphi|}{\partial p} e^{-\mathbf{p} \cdot \mathbf{x} /(i \hbar)} d p d x \tag{56}
\end{equation*}
$$

If $|\varphi|$ equals the Fourier transform of $|\psi|$, the right-hand side of Eq. (55) has the usual value $\hbar^{2} / 4$. In general, the integral I has to be calculated in each case separately. It can be smaller than $\hbar^{2} / 4$ and go to zero with increasing time [6].

VI. CONCLUSION

In [6], one-dimensional uncertainty relations for the classical and quantum parts of the variances $\left\langle(\Delta x)^{2}\right\rangle$ and $\left\langle(\Delta p)^{2}\right\rangle$ appearing in the Heisenberg and Robertson-Schrödinger uncertainty relations were investigated. In this paper, their multidimensional generalization has been discussed.

Measurement of the coordinate and momentum is characterized by the variances that are the sum of the classical and quantum parts. The quantum parts do not depend on the phase of the wave function and are given by the mean square of the derivative of the probability density or the envelope of the wave function. In contrast, the classical parts depend on the mean square of the derivative of the phase of the wave function. To measure the quantum parts direct measurement of the probability density in the coordinate or momentum representation and its derivative can be made. Depending on the type of measurement, usual Heisenberg [Eq. (1)] and Robertson-Schrödinger [Eq. (4)] relations can be then replaced by Eqs. (29), (32), (33), (36), (37), (46), (47), (50), (51), (54), or (55).

The constant $\hbar^{2} / 4$ appears only in Eqs. (1), (4), (29), (36), (37), (50), and (51) containing at least one quantum part of the variances of the coordinate and momentum. In such cases, attainable accuracy of measurement is limited by the corresponding uncertainty relation.

Constant $\hbar^{2} / 4$ does not appear in Eqs. (32), (33), (46), and (47), which have classical character. In these cases, accuracy of measurement can be in principle arbitrary.

A special case is represented by Eqs. (54) and (55) for two quantum parts of the variances. As shown in [6] for Eq. (55), the constant $\hbar^{2} / 4$ is obtained if $|\varphi|$ equals the Fourier transform of $|\psi|$. In general, the corresponding expression has to be calculated in each case separately. Depending on the result, attainable accuracy of the corresponding measurement can be higher than follows from the Heisenberg and RobertsonSchrödinger uncertainty relations.

Finally, we would like to make a note on the spreading of the wave packets in time. In the one-dimensional case, spreading of the wave packets is given by the increasing value of the left-hand side of the corresponding uncertainty relation [6]. It depends on the number of classical parts appearing at the left-hand side. For the Gaussian wave packet and two classical parts, the left-hand side of Eqs. (1) and (4) is proportional to the square of time. For one classical part, the left-hand side of Eqs. (37) and (51) increases as the first power of time. An interesting case is represented by Eq. (55) with no classical parts, where its right-hand side equals $\hbar^{2} / 4$ in special cases only. For the

Gaussian wave packet, the left-hand side of Eq. (55) goes to zero in time as $1 / t^{2}$ and the right-hand side goes as $1 / t^{3}$ [6]. For more dimensions, similar conclusions can obviously be made.

These results show that the Heisenberg and RobertsonSchrödinger uncertainty relations can be replaced by sharper one-dimensional relations and their multidimensional generalization. It shows also that the Heisenberg and

Robertson-Schrödinger uncertainty relations should not be automatically applied to all measurements since it can lead to incorrect conclusions. Depending on the character of measurement, the corresponding relations discussed in this paper and the Heisenberg and Robertson-Schrödinger relations can give different bounds of attainable accuracy of measurement. For this reason, our results are not only of theoretical interest but also important from the experimental point of view.
[1] W. Heisenberg, Z. Phys. 43, 172 (1927).
[2] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[3] E. Schrödinger, Proc. Prussian Acad. Sci. Phys. Math. Section 14, 296 (1930) [arXiv:quant-ph/9903100].
[4] H. P. Robertson, Phys. Rev. 46, 794 (1934).
[5] L. Skála, J. Čížek, and V. Kapsa, Ann. Phys. 326, 1174 (2011).
[6] L. Skála, Int. J. Theor. Phys. 52, 3393 (2013).
[7] L. de la Peña-Auerbach and A. M. Cetto, Phys. Lett. A 39, 65 (1972).
[8] A. L. Chistyakov, Theor. Math. Phys. 27, 380 (1976).
[9] V. V. Dodonov and I. V. Manko, Trudy Fiziceskogo Instituta im. P. N. Lebedeva 183, 5 (1987). [Proceedings of the Lebedev Physics Institute 183, 3 (1989), Nova Science, New York, 1989].
[10] E. Arthurs and M. S. Goodman, Phys. Rev. Lett. 60, 2447 (1988).
[11] D. A. Trifonov, J. Phys. A 33, L299 (2000).
[12] D. A. Trifonov, J. Phys. A 34, L75 (2001).
[13] D. A. Trifonov, Eur. Phys. J. B 29, 349 (2002).
[14] M. Ozawa, Phys. Lett. A 318, 21 (2003).
[15] M. Ozawa, Phys. Rev. A 67, 042105 (2003).
[16] M. Ozawa, Ann. Phys. 311, 350 (2004).
[17] S. Luo and Z. Zhang, J. Stat. Phys. 114, 1557 (2004).
[18] S. L. Luo, Theor. Math. Phys. 143, 681 (2005).
[19] M. Ozawa, J. Opt. B 7, S672 (2005).
[20] B. Busch, T. Heinonen, and P. Lahti, Phys. Rep. 452, 155 (2007).
[21] A. Winter, Nature Physics 6, 640 (2010).
[22] D. A. Trifonov, B. A. Nikolov, and I. M. Mladenov, J. Geom. Symm. Phys. 16, 57 (2009); arXiv:0902.3880v4 [quant-ph]
[23] L. Skála and V. Kapsa, J. Phys. A 41, 265302 (2008).
[24] L. Skála and V. Kapsa, Int. J. Quant. Chem. 109, 1626 (2009).
[25] L. Skála, J. Čížek, and V. Kapsa, Collect. Czech. Chem. Commun. 76, 399 (2011).
[26] L. Skála, J. Čížek, and V. Kapsa, in Quantum Mechanics, edited by J. P. Groffe (Nova Science, New York, 2012), pp. 405-420.
[27] L. Skála and V. Kapsa, in Theoretical Concepts of Quantum Mechanics, edited by M. R. Pahlavani (InTech, Rijeka, 2012), pp. 205-224.

