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It is known that the Heisenberg and Robertson-Schrödinger uncertainty relations can be replaced by sharper
relations in which the “classical” (depending on the gradient of the phase of the wave function) and “quantum”
(depending on the gradient of the envelope of the wave function) parts of the variances 〈(�x)2〉 and 〈(�p)2〉 are
separated. In this paper, multidimensional generalization of these relations is discussed.
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I. INTRODUCTION

The Heisenberg uncertainty relation for the coordinate x

and momentum p has the well-known form [1]

〈(�x)2〉〈(�p)2〉 � h̄2

4
, (1)

where

〈(�x)2〉 =
∫ ∞

−∞
(x − 〈x〉)2|ψ |2dx, (2)

〈(�p)2〉 =
∫ ∞

−∞

∣∣(p − 〈p〉)ψ∣∣2
dx, (3)

ψ = ψ(x,t) is the normalized wave function, p = −ih̄(∂/∂x),
〈 〉 denotes the usual quantum-mechanical mean value, and h̄

is the reduced Planck constant h̄ = h/(2π ).
The Robertson-Schrödinger uncertainty relation for the

coordinate and momentum has the form [2–6]

〈(�x)2〉〈(�p)2〉

�
[ ∫ ∞

−∞
(x − 〈x〉)

(
∂s1

∂x
−

〈
∂s1

∂x

〉)
|ψ |2dx

]2

+ h̄2

4
. (4)

The Heisenberg relation can be obtained from this relation by
neglecting the square of the integral at the right-hand side.

For recent discussion of uncertainty relations see, e.g.,
[7–22].

It is known that the Heisenberg uncertainty relation and
also the Robertson-Schrödinger uncertainty relation can be
replaced by a pair of sharper relations in which the “classical”
(depending on the gradient of the phase of the wave function)
and “quantum” (depending on the gradient of the envelope
of the wave function) parts of the variances of the coordinate
〈(�x)2〉 and momentum 〈(�p)2〉 are separated [5,6,23–27].
This separation is based on the following idea.

The normalized wave function ψ can be always written in
terms of its modulus and argument (phase):

ψ = |ψ |eiarg(ψ) = e−s2/h̄eis1/h̄, (5)

where s1(x,t) and s2(x,t) are real functions. Then we get

pψ = ∂s1

∂x
ψ + i

∂s2

∂x
ψ. (6)

The mean momentum can be written as

〈p〉 = 〈ψ |pψ〉 =
∫ ∞

−∞

∂s1

∂x
|ψ |2dx + i

∫ ∞

−∞

∂s2

∂x
|ψ |2dx.

(7)

Assuming the wave functions with the property |ψ |2 → 0 for
x → ∞, the second integral in Eq. (7) does not contribute to
the mean momentum:∫ ∞

−∞

∂s2

∂x
|ψ |2dx = −h̄

2

∫ ∞

−∞

∂

∂x
e−2s2/h̄dx = −h̄

2
e−2s2/h̄

∣∣∣∣
∞

x=−∞
= 0. (8)

Therefore, the resulting expression for the mean momentum
[5,6,24–27]

〈p〉 =
∫ ∞

−∞

∂s1

∂x
|ψ |2dx (9)

does not depend on ∂s2/∂x. This formula corresponds to
the transition from the point particle in classical mechanics
where the probability density has the δ-like character to the
particle described by the probability density |ψ |2 in quantum
mechanics. At the same time, the expression for the classical
momentum pcl = ∂S/∂x, where S is the Hamilton action, is
replaced here by the mean value 〈p〉 = 〈∂s1/∂x〉, where the
function s1 corresponds to S and the probability density |ψ |2
is introduced.

It follows from Eq. (6) that the mean value 〈p2〉 can be
written as a sum of two parts [5,26,27]:

〈p2〉 = 〈pψ |pψ〉 = 〈
p2

1

〉 + 〈
p2

2

〉
, (10)

where

〈
p2

1

〉 =
∫ ∞

−∞

(
∂s1

∂x

)2

|ψ |2dx (11)

and

〈
p2

2

〉 =
∫ ∞

−∞

(
∂s2

∂x

)2

|ψ |2dx. (12)

The first part 〈p2
1〉 that can be denoted as “classical” is

statistical generalization of the expression p2
cl = (∂S/∂x)2

from classical mechanics, in which the classical momentum
pcl = ∂S/∂x is replaced by ∂s1/∂x and the probability density
|ψ |2 is introduced. The second “quantum” part 〈p2

2〉 is given by
|ψ |2 or the envelope of the wave function |ψ | = exp(−s2/h̄)
and its derivative. It does not depend on ∂s1/∂x and does not
have its counterpart in classical mechanics.

Such separation applies not only for 〈p2〉 and kinetic energy
but also for the variance 〈(�p)2〉 appearing in the Heisenberg
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uncertainty relation [5,26,27]:

〈(�p)2〉 = 〈(p − 〈p〉)2〉 = 〈(�p1)2〉 + 〈(�p2)2〉, (13)

where

〈(�p1)2〉 =
∫ ∞

−∞

(
∂s1

∂x
−

〈
∂s1

∂x

〉)2

|ψ |2dx, (14)

〈(�p2)2〉 =
∫ ∞

−∞

(
∂s2

∂x
−

〈
∂s2

∂x

〉)2

|ψ |2dx

=
∫ ∞

−∞

(
∂s2

∂x

)2

|ψ |2dx, (15)

and Eq. (8) is used.
Using the Schwarz inequality, a few pairs of the one-

dimensional uncertainty relations for a different number of
classical and quantum parts of (�x)2〉 and 〈(�p)2〉 were de-
rived [6]. In this paper, their multidimensional generalization
is discussed.

II. MULTIDIMENSIONAL GENERALIZATION
OF THE ROBERTSON-SCHRÖDINGER

UNCERTAINTY RELATION

Now, we consider the N -dimensional case with the wave
function depending on N spatial variables ψ = ψ(x,t), x =
(x1, . . . ,xN ).

In the multidimensional case, the variance 〈(�x)2〉 in the
Heisenberg uncertainty relation [Eq. (1)] can be generalized
to a N × N matrix:

〈(�X)2〉mn =
∫

(xm − 〈xm〉) (xn − 〈xn〉) |ψ |2 dξ,

m,n = 1, . . . ,N, (16)

where dξ = dx1 . . . dxN and integration is performed over the
whole space. By calculating

N∑
m,n=1

c∗
m〈(�X)2〉mncn =

∫ ∣∣∣∣
N∑

m=1

cm (xm − 〈xm〉)
∣∣∣∣
2

|ψ |2 dξ�0,

(17)

where cm are complex numbers and the star denotes the
complex conjugate, we see that the matrix 〈(�X)2〉 is positive
semidefinite.

Analogously, Eqs. (13)–(15) can be generalized as

〈(�P )2〉mn = 〈(�P1)2〉mn + 〈(�P2)2〉mn, m,n = 1, . . . ,N,

(18)

where

〈(�P1)2〉mn =
∫ (

∂s1

∂xm

−
〈

∂s1

∂xm

〉) (
∂s1

∂xn

−
〈
∂s1

∂xn

〉)
|ψ |2 dξ

(19)

is the classical part of 〈(�P )2〉 and

〈(�P2)2〉mn =
∫

∂s2

∂xm

∂s2

∂xn

|ψ |2 dξ (20)

is the quantum part of 〈(�P )2〉. Using similar arguments as
in the preceding paragraph, it can be shown that the matrices
〈(�P1)2〉 and 〈(�P2)2〉 are positive semidefinite, too.

Following the idea formulated in Eq. (6) we define a
correlation matrix G among the coordinates and momentum:

Gmn =
∫

(xm − 〈xm〉)
(

∂s1

∂xn

−
〈
∂s1

∂xn

〉
+ i

∂s2

∂xn

)
|ψ |2dξ,

m,n = 1, . . . ,N. (21)

Using the expression |ψ |2 = exp(−2s2/h̄), integration by
parts, and assuming validity of the conditions |ψ |2 → 0 and
xm|ψ |2 → 0 for xm → ±∞ we get [23]∫

(xm − 〈xm〉) ∂s2

∂xn

|ψ |2dξ = h̄

2
δmn (22)

and

Gmn =
∫

(xm − 〈xm〉)
(

∂s1

∂xn

−
〈
∂s1

∂xn

〉)
|ψ |2dξ + i

h̄

2
δmn,

m,n = 1, . . . ,N. (23)

Then, we create a matrix M of the order 2N :

M =
(

(�X)2 G

G+ (�P )2

)
, (24)

where the cross denotes the Hermitian conjugation.
To show that also the matrix M is positive semidefinite we

define quantities fm:

fm = xm − 〈xm〉, fN+m = ∂s1

∂xm

−
〈

∂s1

∂xm

〉
+ i

∂s2

∂xm

,

m = 1, . . . ,N. (25)

By analogy with Eq. (17) we get

2N∑
m,n=1

c∗
mMmncn =

∫ ∣∣∣∣∣
2N∑

m=1

cmfm

∣∣∣∣∣
2

|ψ |2dξ � 0 (26)

and see that the matrix M is positive semidefinite, too.
Further, we make use of a general result valid for N × N

matrices A, B, C, and D, where D is a regular matrix [23]:(
1 −BD−1

0 1

)(
A B

C D

)
=

(
A − BD−1C 0

C D

)
, (27)

leading to

det

(
A B

C D

)
= det(A − BD−1C) det(D). (28)

Applying this result to the matrix M given by Eq. (24) we
get the multidimensional uncertainty relation for (�X)2 and
(�P )2:

det{(�X)2(�P )2 − G[(�P )2]−1G+(�P )2} � 0. (29)

This relation is the multidimensional generalization of the
Robertson-Schrödinger uncertainty relation [Eq. (4)].

III. RELATIONS FOR THE QUANTUM AND CLASSICAL
PARTS OF THE MOMENTUM

First, we take the matrix M in the form

M =
(

(�X)2 G

G+ (�P1)2

)
, (30)
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where

Gmn =
∫

(xm − 〈xm〉)
(

∂s1

∂xn

−
〈
∂s1

∂xn

〉)
|ψ |2dξ,

m,n = 1, . . . ,N. (31)

Applying Eq. (28) to the matrix M given by Eq. (30) we
get the multidimensional relation for (�X)2 and the classical
part (�P1)2 [23]:

det{(�X)2(�P1)2 − G[(�P1)2]−1G+(�P1)2} � 0. (32)

For N = 1, the one-dimensional relation for 〈(�x)2〉 and the
classical part 〈(�p1)2〉 is obtained [23]:

〈(�x)2〉〈(�p1)2〉

�
[ ∫ ∞

−∞
(x − 〈x〉)

(
∂s1

∂x
−

〈
∂s1

∂x

〉)
|ψ |2dx

]2

. (33)

This relation has the usual meaning known from mathematical
statistics: The product of variances of two quantities is greater
than or equal to the square of their covariance. Depending on
the functions ∂s1/∂x and |ψ |2, the square of the covariance
of the coordinate and momentum at the right-hand side of
this relation can have arbitrary values greater than or equal to
zero. If the right-hand side of Eq. (33) equals zero, any of the
quantities 〈(�x)2〉 and 〈(�p1)2〉 can equal zero independently
of the other one. In this sense, this inequality has classical
character and is different from the Heisenberg and Robertson-
Schrödinger uncertainty relations. Interpretation of Eq. (32) is
analogous.

Taking the matrix M in the form

M =
(

(�X)2 G

G+ (�P2)2

)
, (34)

where

Gmn = i

∫
(xm − 〈xm〉) ∂s2

∂xn

|ψ |2dξ = i
h̄

2
δmn,

m,n = 1, . . . ,N, (35)

we obtain the multidimensional uncertainty relation for (�X)2

and the quantum part (�P2)2 [23]:

det

{
(�X)2(�P2)2 − h̄2

4

}
� 0. (36)

For N = 1, the one-dimensional uncertainty relation for
〈(�x)2〉 and the quantum part 〈(�p2)2〉 is [23]

〈(�x)2〉〈(�p2)2〉 � h̄2

4
. (37)

Similarly to Eq. (33), this relation can be understood as the
standard statistical inequality, too. However, the right-hand
side of Eq. (37) equals h̄2/4 and does not depend on the
concrete form of the functions s1 and s2. Similarly to the
Heisenberg uncertainty relation, the left-hand side of this
relation cannot be smaller than h̄2/4. In contrast to Eq. (33), the
left-hand side of Eq. (37) does not depend on s1 and depends
only on the envelope |ψ | = exp(−s2/h̄) of the wave function
ψ and its derivative. In this sense, Eq. (37) and also Eq. (36)
have quantum character.

The sum of Eqs. (33) and (37) leads to the Robertson-
Schrödinger uncertainty relation [Eq. (4)]. Therefore, the pair
of Eqs. (33) and (37) is sharper than Eqs. (1) and (4).

IV. RELATIONS FOR THE QUANTUM AND CLASSICAL
PARTS OF THE COORDINATE

An analogous approach can be used also for the wave
function in the momentum representation. By analogy with
the coordinate representation, we consider the N -dimensional
case with the wave function in the momentum representation
ϕ = ϕ(p,t), where p = (p1, . . . ,pN ).

The wave function

ϕ(p,t) = 1

(2πh̄)N/2

∫
ψ(x,t) ep·x/(ih̄)dξ (38)

can be written in the form analogous to Eq. (5):

ϕ(p,t) = e−r2/h̄eir1/h̄, (39)

where r1(p,t) and r2(p,t) are real functions.
Analogously to the preceding section we define the matrix

〈(�P )2〉 in the momentum representation:

〈(�P )2〉mn =
∫

(pm − 〈pm〉)(pn − 〈pn〉)|ϕ|2dτ, (40)

where dτ = dp1 . . . dpN and integration is performed over the
whole space. Using the coordinate operator xm = ih̄(∂/∂pm)
it is possible to derive equations analogous to Eqs. (18)–(20):

〈(�X)2〉mn = 〈(�X1)2〉mn + 〈(�X2)2〉mn,

m,n = 1, . . . ,N, (41)

where

〈(�X1)2〉mn =
∫ (

∂r1

∂pm

−
〈

∂r1

∂pm

〉) (
∂r1

∂pn

−
〈
∂r1

∂pn

〉)
|ϕ|2 dτ

(42)

is the classical part of 〈(�X)2〉 and

〈(�X2)2〉mn =
∫

∂r2

∂pm

∂r2

∂pn

|ϕ|2dτ (43)

is the quantum part of 〈(�X)2〉.
Assuming the matrix M in the form

M =
(

(�P )2 G

G+ (�X1)2

)
, (44)

where

Gmn = −
∫

(pm − 〈pm〉)
(

∂r1

∂pn

−
〈
∂r1

∂pn

〉)
|ϕ|2dτ,

m,n = 1, . . . ,N (45)

and using Eq. (28) we obtain the multidimensional relation for
〈(�P )2〉 and the classical part 〈(�X1)2〉:

det{(�P )2(�X1)2 − G[(�X1)2]−1G+(�X1)2} � 0. (46)

For N = 1, it leads to the one-dimensional relation for 〈(�p)2〉
and 〈(�x1)2〉 [6]:

〈(�p)2〉〈(�x1)2〉

�
[ ∫ ∞

−∞
(p − 〈p〉)

(
∂r1

∂x
−

〈
∂r1

∂x

〉)
|ϕ|2dp

]2

. (47)
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Taking the matrix M in the form

M =
(

(�P )2 G

G+ (�X2)2

)
, (48)

where

Gmn = −i

∫
(pm − 〈pm〉) ∂r2

∂pn

|ϕ|2dτ = −i
h̄

2
δmn,

m,n = 1, . . . ,N, (49)

we obtain the multidimensional uncertainty relation for (�P )2

and the quantum part (�X2)2:

det

{
(�P )2(�X2)2 − h̄2

4

}
� 0. (50)

For N = 1, the one-dimensional uncertainty relation for
〈(�p)2〉 and the quantum part 〈(�x2)2〉 is [6]

〈(�p2〉〈(�x2)2〉 � h̄2

4
. (51)

Comments on these relations can be made as in the
preceding section and will not be given here.

V. RELATION FOR THE QUANTUM PARTS OF THE
COORDINATE AND MOMENTUM

It has been shown in the preceding sections that matrices
(�X)2 = (�X1)2 + (�X2)2 and (�P )2 = (�P1)2 + (�P2)2

can be written as a sum of two matrices having classical and
quantum character. Now we ask if it is possible to derive some
relation for quantum parts (�X2)2 and (�P2)2 only, without
the presence of matrices (�X1)2 and (�P1)2. Such relation is
discussed in this section.

For this aim, we take the matrix M in the form

M =
(

(�X2)2 G

G+ (�P2)2

)
, (52)

where

Gmn = 1

(2πh̄)N/2

∫ ∫
∂r2

∂pm

|ϕ|e−p·x/(ih̄) ∂s2

∂xn

|ψ |dξdτ (53)

= h̄2

(2πh̄)N/2

∫ ∫
∂|ϕ|
∂pm

e−p·x/(ih̄) ∂|ψ |
∂xn

dξdτ,

m,n = 1, . . . ,N.

Then, Eq. (28) yields the relation for the quantum parts of
(�X)2 and (�P )2:

det{(�X2)2(�P2)2 − G[(�P2)2]−1G+(�P2)2} � 0. (54)

If the wave functions ψ and ϕ depend on time, all quantities
in this relation may be time dependent. For this reason, we do
not denote Eq. (54) as an uncertainty relation but as a relation
or an inequality.

The wave functions ψ and ϕ are related by the Fourier
transform. In contrast, this is not generally the case for their
envelopes |ψ | and |ϕ|. For this reason, Eq. (54) has different
character than other uncertainty relations discussed in this
paper and can lead to interesting results (for detailed discussion
in the one-dimensional case see [6]).

For N = 1, Eq. (54) becomes

〈(�x2)2〉〈(�p2)2〉 � h̄2|I |2, (55)

where

I = h̄

∫ ∞

−∞

∂|ψ |
∂x

1√
2πh̄

∫ ∞

−∞

∂|ϕ|
∂p

e−p·x/(ih̄)dpdx. (56)

If |ϕ| equals the Fourier transform of |ψ |, the right-hand side
of Eq. (55) has the usual value h̄2/4. In general, the integral I

has to be calculated in each case separately. It can be smaller
than h̄2/4 and go to zero with increasing time [6].

VI. CONCLUSION

In [6], one-dimensional uncertainty relations for the clas-
sical and quantum parts of the variances 〈(�x)2〉 and 〈(�p)2〉
appearing in the Heisenberg and Robertson-Schrödinger
uncertainty relations were investigated. In this paper, their
multidimensional generalization has been discussed.

Measurement of the coordinate and momentum is charac-
terized by the variances that are the sum of the classical and
quantum parts. The quantum parts do not depend on the phase
of the wave function and are given by the mean square of
the derivative of the probability density or the envelope of
the wave function. In contrast, the classical parts depend on
the mean square of the derivative of the phase of the wave
function. To measure the quantum parts direct measurement
of the probability density in the coordinate or momentum
representation and its derivative can be made. Depending
on the type of measurement, usual Heisenberg [Eq. (1)] and
Robertson-Schrödinger [Eq. (4)] relations can be then replaced
by Eqs. (29), (32), (33), (36), (37), (46), (47), (50), (51), (54),
or (55).

The constant h̄2/4 appears only in Eqs. (1), (4), (29), (36),
(37), (50), and (51) containing at least one quantum part
of the variances of the coordinate and momentum. In such
cases, attainable accuracy of measurement is limited by the
corresponding uncertainty relation.

Constant h̄2/4 does not appear in Eqs. (32), (33), (46), and
(47), which have classical character. In these cases, accuracy
of measurement can be in principle arbitrary.

A special case is represented by Eqs. (54) and (55) for two
quantum parts of the variances. As shown in [6] for Eq. (55),
the constant h̄2/4 is obtained if |ϕ| equals the Fourier transform
of |ψ |. In general, the corresponding expression has to be
calculated in each case separately. Depending on the result,
attainable accuracy of the corresponding measurement can
be higher than follows from the Heisenberg and Robertson-
Schrödinger uncertainty relations.

Finally, we would like to make a note on the spreading of the
wave packets in time. In the one-dimensional case, spreading
of the wave packets is given by the increasing value of the
left-hand side of the corresponding uncertainty relation [6].
It depends on the number of classical parts appearing at the
left-hand side. For the Gaussian wave packet and two classical
parts, the left-hand side of Eqs. (1) and (4) is proportional to the
square of time. For one classical part, the left-hand side of Eqs.
(37) and (51) increases as the first power of time. An interesting
case is represented by Eq. (55) with no classical parts, where
its right-hand side equals h̄2/4 in special cases only. For the
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Gaussian wave packet, the left-hand side of Eq. (55) goes to
zero in time as 1/t2 and the right-hand side goes as 1/t3 [6].
For more dimensions, similar conclusions can obviously be
made.

These results show that the Heisenberg and Robertson-
Schrödinger uncertainty relations can be replaced by
sharper one-dimensional relations and their multidimen-
sional generalization. It shows also that the Heisenberg and

Robertson-Schrödinger uncertainty relations should not be
automatically applied to all measurements since it can lead
to incorrect conclusions. Depending on the character of mea-
surement, the corresponding relations discussed in this paper
and the Heisenberg and Robertson-Schrödinger relations can
give different bounds of attainable accuracy of measurement.
For this reason, our results are not only of theoretical interest
but also important from the experimental point of view.
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