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Chapter 15

QUANTUM MECHANICS AND M ATHEMATICAL
STATISTICS

L. Skalat2* J. Cizek-2 and V. Kapsa
LCharles University, Faculty of Mathematics and Physics, kdd¢u 3,
121 16 Prague 2, Czech Republic
2University of Waterloo, Department of Applied Mathematics
Waterloo, Ontario N2L 3G1, Canada

Abstract

Basic mathematical apparatus of quantum mechanics likevélve function, coordi-
nate and momentum operator, corresponding commutatiatiae) Schrédinger equa-
tion, kinetic energy, uncertainty relations and contipeiuation is discussed from the
point of view of mathematical statistics. It is shown thas thathematical structure
of quantum mechanics can be understood as generalizatidassical mechanics in
which the statistical character of results of measurensetatkien into account and the
most important general properties of statistical theaarescorrectly respected.

PACS 03.65.-w, 03.65.Ca, 03.65.Ta.

Keywords: quantum mechanics, mathematical statistics, Hamilton—Jacobi equation,
Schrédinger equation.

1. Introduction

Quantum mechanics and its meaning have been discussed in a large numbleli-of
cations from many different points of view (see e.g. books [1, 2])héives that quantum
mechanics is, despite its numerous successful applications, in sometsesmatterintu-
itive and difficult to understand.

In this chapter, we discuss quantum mechanics from the point of view thdfasent
from the previous ones and that can, as we hope, contribute to its bednstanding. Our
aim is to compare (a) statistical approach to the Hamilton—Jacobi equation ih thigic
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406 L. Skéla, JCizek and V. Kapsa

probability densityp(x,t) describing the statistical character of measurement of the coordi-
natex and momentunp at timet is introduced (section 2.) and (b) analogous approach to the
Schrddinger equation in which the mean values of these quantities are tadc{daction

6.). For the sake of simplicity, only the bound states having the property.ligx"p = 0,
n=0,1,2 are investigated. By comparing results of (a) and (b) we are then abheltdifi
ferences of both approaches and identify the terms that are presardrituqn mechanics
only and do not appear in approach (a) based on classical mechanics.

In more detail, we show that results following from the Schrédinger equatienin
contrast to those following from the Hamilton—Jacobi equation, in agreewigngeneral
structure of statistical theories. Therefore, quantum mechanics is fepoiht of view of
mathematical statistics formulated correctly.

Basic mathematical apparatus of quantum mechanics like the wave functodinzie,
momentum operator, commutation relations and uncertainty relations is alsoséidcus

It is assumed that the momentum can be written in approach (a) in thepferds,; /0x,
wheres; is a real function (sections 2.-4.). This expression is generalization exibres-
sion p = 0S/dx known from classical mechanics, whe3elenotes the Hamilton principal
action. However, in more complicated cases like in case of the square of themhan,
such representation of the momentum leads to results that are incormecthiecpoint of
view of the Schwarz inequality. In contrast to it, representation of the mommelmpumeans
of the differential operatop = —if(d/0x) known from quantum mechanics (approach (b))
leads to formulas that are in agreement with this inequality.

In our statistical approach, the complex wave functioa exp(is; — sp)/h] is only a
different way of writing the statistical information carried by two real funesis; (x,t) and
$(x,t), wherep = exp(—2s,/h) (section 3.). Its main advantage is simple formulation of
the theory in terms of the operators acting on the wave fundtion

Further it is shown that the main differences of approaches (a) arat€h)losely re-
lated to the so-called Fisher informatibe- [ (dp/0x)?/pdx introduced to mathematical
statistics in 1925, i.e. before the first of Schrédinger’s publications antgun mechanics
(section 7.). It appears that the kinetic energy in quantum mechanicts dhaakinetic
energy in approach (a) plus a term that is proportional to the Fisheniatgyn. This term
is responsible for the non-zero kinetic energy of the bound states irtuquanechanics
as is for example the ground state energy of the linear harmonic oscillatsmows that
this well-known quantum mechanical result is closely related to the statistiaedatier of
quantum mechanics and representation of the momentum by the operateif{d/0X).

Another typical quantum result is the existence of the uncertainty relatidsshow
that the uncertainty relation for the coordinateand momentunp is closely related to the
Rao—Cramér inequality known from mathematical statistics that appear in anyriimila
formulated statistical theory. The Heisenberg and Robertson—Scheddingertainty rela-
tions for the coordinate and momentum and two new uncertainty relations ¢hstranger
than the original Heisenberg and Robertson—Schrddinger relatiorfsoarethis point of
view discussed (sections 9.-11.).

The first uncertainty relation from the new ones has its classical anatutjgan be
understood as the well-known inequality according to which the producarmdnces of
two quantities is greater than or equal to the square of their covariandhe Aame time,
the square of the covariance can have arbitrary values greater tegnairto zero.
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The second uncertainty relation mentioned above is related to the Rao—Qnaméal-
ity for the coordinatex and the Fisher informatioh It has the same meaning as the above
mentioned inequality between the variances and covariance; howevppeias that the
square of the covariance is independent of the statistical state of thensysseribed by
the wave functionp and equalgi?/4. Therefore, the second uncertainty relation has no
classical analogy and is related to the differential form of the momentunataper

The continuity equation in guantum mechanics is usually derived from thé&&alger
equation. Itis shown that this equation and the expression for the pligpdénsity current
can be obtained in analogy with classical continuum mechanics if the probalshitsity
current is calculated from the expressjoa pv, where the velocity equalsv = p/mand
mis the mass (section 12.). Then, using the analogy of the expression fmotihentum
known from classical mechanigs= JSone gets the continuity equation of quantum me-
chanics. It shows that the continuity equation in quantum mechanics is analtg the
continuity equation known from classical continuum mechanics.

2. Statistical Description of Results of Measurement

In this section, we discuss an important step making it possible to compare mathema
ical formalism of quantum and classical mechanics — statistical descripticesolts of
measurement. More detailed discussion of this approach can be founebin [3

For the sake of simplicity, we consider only one spatial coordirated timet.

We note that measuring apparatus is not described in measurement on thecopdr
level and the measured system interacts with the measuring apparatuefofidien agree-
ment with experimental experience, we assume that the distribution of tHesrekmea-
surement of the coordinateat timet can be described by the probability dengix,t)
obeying the normalization condition

/pdx: 1, (1)

where the integration is performed from minus infinity to plus infinity. We assustethat
p has the property
lim x'p=0, n=0,1,2 2

X— 400
Therefore, we limit ourselves to discussion of the so-called bound staggsg conditions
(2).
Further we suppose that the mean valkjeof the coordinate resulting from measure-
ment is given by the integral

(x) = / xpdx. 3)

In the limit
P(Xt) — (X —Xa) 4)

corresponding to transition to classical mechanics with the classical trajegtes xq (1)
the mean coordinat&) equalsxy .

The mean value (3) takes into account the fact that measurement of trtinedex
performed on different members of the statistical ensemble of systems ieragate (or
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in repeated measurement on one system in this state) leads in real expetobifésent
values ofx that has to be averaged with the corresponding statistical weighherefore,
the statistical ensemble considered here is the same as that used in quanhamiosec

In classical mechanics, the motion of a particle is described by the HamiltambiJac
equation [7, 8] ,

(P—aA) S
o +V + P =0, (5)

whereS= S(xq,t) is the Hamilton principal actionsy denotes the classical coordinate of

the particle,
0S

P= 3% (6)
is the momentum of the particlen andq are its mass and charge aAd= A(xq,t) and
V =V(xq,t) denote the vector and scalar potential in one-dimension, respectively.

Statistical generalization of the last equation analogous to Eq. (3) can Ipprioagh
(a) written in the form

(p) = [ poax= [ Spax )

wheres; = s1(x,t) is a new real function corresponding to the Hamilton func®nit is
assumed that the functienleads fop(x,t) — d(X—Xg ) ands; — Sto the same momentum
as Eq. (6)

_0sp  0S

<p>767xc|767xc|'

(8)

3. Momentum Operator

In this section, we introduce the wave functiprand show that for calculating the mean
momentum p), the momentum can be represented either by the fungtierds; /dx used
in the preceding section or by the momentum operpter i (0/0x) acting on the wave
function.

We start from Eq. (7) and re-write it into the form

d i 00
(P =/asxlpdxz/pe"sl/h<—lhm(>ésl/hdx- ©)

The constant: > 0 could be an arbitrary real constant depending on the choice of units.
However, to get formulas that agree with quantum mechanics, we will asthahk =
h/(2m) denotes the reduced Planck constant.

Further, we introduce a real functiep = sy(x,t) by the equation

p=e 2/l (10)
or equivalently
S = —g Inp. (1)
It follows from Eq. (2) that the integral

0 o N[0 o ___h/ap b e
/axpdx_ 2] ax H= 5 ) = TPk =0 (12)
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equals zero. Therefore, we can write the mean momentum also in the form

(p) = /e(—isl—sz)/ﬁ<_ ih;)() glisi—=2)/hgy (13)

’ <pw—/w*(—m;JuMK (14)

where the functiomp equals
Y= glisi—%2)/h (15)

and the star denotes the complex conjugate. The fungtizadled usually the wave function
in quantum mechanics is in our approach only a different way of reptiegethe state of
the particle described by the functiosisands,.

It is worth noting that our expression for the wave function (15) is similar & df
Bohm [9, 10]. However, we do not assume the existence of hidderblesihere.

From Eq. (14) we get the usual expression for the mean momentum in the for

)= [ wpwox (16)
where the momentum operator equals

. .0
p= —|h&. a7)
We note that representation of the momentum by the fungtiends; /ox used in Eq.
(7) does not depend on the derivatdg/dx. Itis correct in the limit of classical mechanics
for p(x,t) — &(x—Xxg) or h — 0, when we can assung — S. However, it seems to be
incorrect in a general case.
As shown in Eq. (12), the derivativs, /0x does not contribute to the mean momentum
(p) and the mean momentum can be calculated either from Eq. (7) or Eq. (16)e-Th
fore, both representations of the momentpre- ds;/0x and p = —ik(d/0x) are in this
case equivalent. However, they can give different results in more lozatgd cases. This
guestion is discussed in the following sections in detail.

4. Mean Value of xp

In this section, we investigate the mean value of the product of the coordindte
momentum which is important in the uncertainty relations.
We calculate the quantum-mechanical mean value

o) (e s

Using Eq. (15) for the wave function we get

<Xp;fpx> _ % / gl-isi=s2)/h [2x<— ihaax> - ih} glisi=s2)/hgy. (19)
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Now we calculate the integral
/e(*isl*SQ)/hx _ind e(islSz)mdx—/xasle252/hdx+i/x632e252/hdx. (20)
0x 0x 0x

Using integration by parts in the last integral and Egs. (1) and (2) we obtain

0% 2s/hgy — ya2s/hpe / 2sp/hgy I
/xaxe dx = x 5 IX:_OO+2 e dx_2. (21)
The resulting formula
(Xp+px) 0 25, /1 _/ 0s;
> =[x I e dx= [ X I padx (22)

agrees with the statistical generalization of the expressid8/dx ) from classical me-
chanics

o) = [ Epax (23)

in which the classical momentud$/dxy is replaced bys; /0x and the probability density
p is taken into account.

Summarizing the results of the last two sections we see that contribution ofitteofu
0sp/0x to the mean value®) and(xp+ px)/2 equals zero and the momentum operator can
be in these cases represented by the fungiiends; /0x. Therefore, the quantum mechan-
ical expressions for the mean coordinate, mean momentunp) and their symmetrized
product in the form(xp+ px)/2 give the same results as Egs. (3), (7) and (23). How-
ever, in more complicated cases as for example in case of the square ofrtrentuom the
derivativeds,/dx plays the important role and the two representations of the momentum
p=0s;/0xandp= —ih(0/0x) lead to different results (see section 6.).

5. Commutation Relation between Coordinate and Momentum

It has been shown in the preceding section that the mean yafiie px)/2 can be
calculated from Eq. (23) in which the coordinatand momentunp = ds; /0x commute

(xp) = / X%pdh (Px). (24)

The fact that the coordinateand momentunp = ds; /dx commute agrees with our experi-
ence from macroworld. However, it is in contradiction with experimentalevies known
from microworld according to which results of measurement of the coaelared momen-
tum depend on the order in which measurement is performed (for getiscalsion see
e.g. [11]). It shows that representation of the momentum by the funptio@s; /0x is not
in microworld usable.

If we use the differential representation of the momentum (17), applicatitre@om-
mutator|x, ] to the wave function yields the commutation relation

X, p| =1ih (25)

known from quantum mechanics.
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6. Hamilton—Jacobi and Schrodinger Equations

To compare approaches (a) and (b), we first replace the giiotne Hamilton—Jacobi
equation (5) by the functios; as in section 2., multiply the equation by the probability
densityp = exp(—2s,/h) and integrate the result ovefrom minus infinity to plus infinity
(see also [6])

(0s1/0x—GA) 0S| 25, /mgy,
/ [ >m +V + 3 e dx=0. (26)
Now we perform analogous steps with the time Schrédinger equation [12]
(p—aA)? oy
[ om +V|y= Ihat . (27)

Multiplying the last equation from the left-hand side ty and integrating ovek from
minus infinity to plus infinity we can write the result in the form (see also [6])

|(f)—QA)l.IJ‘2 2 i aﬁl.'J _
/ {Zm VWP - yinSE ax =0, 28)
Using Eq. (15) for the wave function and Eq. (17) for the momentum opense get
A — 6751 'aj_ (is1—%2)/h
(P—aAY = <ax +is qA>e (29)
and ) )
- 0sy 0, ~
_ 2_ | =22 hancs 29/h
o-amwl=| (G -an) + (52) Je > (30)
Analogously, we obtain
ipd¥ _ (951 9% casyn
quhat_ <6t+|6t>e . (31)

Therefore, Eq. (28) can be written as

. . 2 2
/ [(asl/ax qu)er (052/0X) +V+%Stl+iaast2}e_252/hdxzo. (32)
Due to Eq. (1) the integral
0% 25 /hgy— 1O [ 2s0/hggy
o e dx = 230 e dx=0 (33)

equals zero and the resulting equation

(051/0x— GA)° + (0%2/0X)° /951 2eyingy g (34)

can be compared with Eqg. (26).
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We see that Eq. (34) following from the Schrddinger equation diffesfEqg. (26)

only by the term
1 0 2 _25,/h
%/ (ax> e T (35)

representing a part of the kinetic energy depending on the shape afaibebdity density

p given byds,/ox. This term disappears either in the limit of classical mechanics when we
can assume@(x,t) — 8(X—Xq) anddsy/dx — 0 [6] or if the function(ds,/dx)? has very
small values. This term is not present in Eq. (26). It has purely quanharacter and is
related to the so-called Fisher information discussed in the following section.

7. Fisher Information

The Fisher information is a very important quantity appearing in mathematicatistatis
(see e.g. [13,14]). In our case, it can be introduced in the followinglsinvpy (see also
[3,5,15-17]).

We start with normalization condition (1) for the probability dengtyn which we
perform integration by parts and use Eq. (12)

[(x—a)p],_ . — /(x— a)% dx=1, (36)

wherea s an arbitrary real number. Taking into account Eg. (2) we get the ggytimt of
the following discussion

/(x—a)gsdx: ~1 (37)

Now we make use of the Schwarz inequality for the inner produat) = [ u*vdx of
two complex functions andv

(U u)(vv) = [(uv) (38)
Putting
u=(x—a)\/p, v:\%g)p( (39)
and using inequality (38) we get
/(x— a)zpdx/; <gs>2dx >1, (40)

where the second integral is called the Fisher information

1/0p 2
I/p<0x> dx. (41)
Inequality (40) is usually written in the form [13]

/(x—a)zpdxl > 1. (42)
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This result is very general and does not depend on the concrete medinire variablex.
Interpretation of the last inequality is similar to that of the uncertainty relationgamtym
mechanics since for giveinthe integral/ (x — a)2pdx cannot be smaller tharylLand vice
versa. The minimum of (x— a)2pdx is obtained form = (x).

We note that inequality (42) in a more general form is known in mathematical-statis
tics as the Rao—Cramér inequality [14, 18-20]. Hence, any similarly fornousasistical
theory has to lead to inequality (42) or an analogous one.

Using the expressiop = exp(—2s,/#) for the probability density the Fisher informa-
tion can be written in the equivalent form

2
| % / (fjf) & 252/l (43)

which will appear in the following discussion.

8. Kinetic Energy

Now, we express the mean kinetic energy appearing in Eq. (34)

_ A2 2
| (951/0%— QA+ (352/0X)2 ey, "
2m
as a sum of two terms
T=T1+Ty, (45)
where (095,/0 )2
_ S1/0X— qA —25/h
T = / — m € dx (46)
and X
Rl
To=g. (47)

The first part of the kinetic energly depending ords; /0x is the same as the kinetic
energy appearing in Eq. (26). The second part of the kinetic efferdgpending 0@s,/dx
is proportional to the Fisher informatidrand does not appear in Eq. (26).

We note also that, in contrast to classical mechanics, the kinetic emdayythe bound
states obeying condition (2) cannot equal zero.

9. Heisenberg Uncertainty Relations

In this and the following two sections we discuss the uncertainty relationsrkirom
guantum mechanics and their relation to inequality (42).

For the sake of simplicity, we assume that the potertiauals zero. The Heisenberg
uncertainty relation [21] for the coordinateand momentunp has then the form

2
(02 (ap?) > 49)
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where

(07) = [ (x= ()2 (49)

(o) = [|( itz o) )u

Discussion of the mutual relation of the Heisenberg uncertainty relationaf#@B)elation
(42) for the Fisher information can be found for example in [5, 22].
Using Egs. (12), (15) and (43) we get

and )
dx. (50)

((Bp)?) = ((Ap1)?) + ((Ap2)?), (51)
where )
(o= [ (G- (5e) ) e /e 52)
and ) ,
(Ap2)?) = / (‘;S)f) e’sz/hdx:th. (53)

We see that, analogously to the kinetic enefgyhe mean square deviation of the momen-
tum ((Ap)?) can be split into two parts.

The first part(Ap;)?) can be interpreted within the statistical generalization of classical
mechanics described above in which the classical momeptundS/0x is replaced by
0s1/0x and the probability density = exp(—2s,/h) is introduced (approach (a)).

The second pari(Ap,)?) is proportional to the Fisher informatidrgiven by Eq. (43).
We note also that fof(Ap;)?) = 0 the Heisenberg uncertainty relation (48) can be re-written
in form of inequality (42) for the Fisher information with= (x).

We see that the constalt/4 at the right-hand side of the Heisenberg uncertainty rela-
tion (48) has the same origin as the right-hand side of inequality (42). finerexistence
of the Heisenberg uncertainty relation (48) is closely related to the statistisatigtion of
results of measurement of the coordinatey means of the probability densityand the
differential form of the momentum operatpi(dpproach (b)). This point is discussed in the
following section in more detail.

10. Two New Uncertainty Relations

According to the well-known result of mathematical statistics, the producaiidnces
of two quantities is greater than or equal to the square of their covari2®te [For the
following two cases it is equivalent to the Schwarz inequality (38) with a deitztioice of
the functionsu andv.

Now we show that the Heisenberg uncertainty relation can be replacedobyneer-
tainty relations for{(Ap;)?) and((Ap.)?) (see also [23, 24]).

First, we take

u=Ax,/p (54)
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-(3-(3)

Then, the Schwarz inequality yields the first uncertainty relation

(8%)2) (Ap1)?) [ / Ax(aas)j < >) eZSZ/hdxr. (56)

As it follows from section 4., the functiods;/0x in the last integral represents in this
case the classical momentum and this relation has the usual above mentiomédgmea
known from mathematical statistics. Depending on the functirends,, the square of
the covariance of the coordinate and momentum at the right-hand side oflttism can
have arbitrary values greater than or equal to zero.

The second uncertainty relation can be obtained in an analogous way for

and

u=»Ax\/p (57)
and 5 5
S S
- (5 (%)) %)
with the result
. 2
(@2 = | [oc-00) (52 (52) )e=af . 9
The right-hand side of this relation can be due to Eq. (12) simplified
(A% (Ap2)?) ( / 0% —ZSQ/th> . (60)

Then, Eq. (21) leads to the final form of the second uncertainty relation

hZ
(02 (Bp2)) > (61)

This uncertainty relation follows from the Schwarz inequality in a similar way aditht
one, however, the covarianfe v) is in this case constant and equa® > 0 independently
of the concrete form of the functios,. We note also that relation (61) is fgr) = a
equivalent to relation (42) for the Fisher information.

We see that the Heisenberg uncertainty relation (48) can be replaceda lmdve de-
tailed uncertainty relations (56) and (61). First uncertainty relation (&6)oe understood
as the standard statistical inequality between the coordinatel momentum represented
by the functionp = 0s;/dx. Second uncertainty relation (61) can be understood as the
standard statistical inequality, too. However, because of the specific dbthe covari-
ance(u, V) which equald:/2 independently o$;, the left-hand side of this relation must be
greater than or equal /4.

Similar uncertainty relations can be derived also in the multidimensional cas24[23
and for the mixed states described by the density matrix [24].
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The sum of uncertainty relations (56) and (61) gives the relation

2
<(AX [/AX (%S);[ <651 >> 8_252/th:| + h: (62)

The Heisenberg uncertainty relation (48) can be obtained from this relayimeglecting
the first term on its right-hand side. Therefore, uncertainty relations 4668 (61) are
stronger than the corresponding Heisenberg uncertainty relation (48).

11. Robertson—Schrodinger Uncertainty Relation

Relationship of uncertainty relations (56) and (61) to the Robertsoné8iciger un-
certainty relation [25—-28] can be clarified as follows.

For the linear hermitian operatofsandB, the Robertson—Schrédinger uncertainty re-
lation can be written in the form

(BAY)(88)%) > 5 (({BA.08))? + | (A B) ), (63)

where(A) = (Y |AqJ> is the mean value of the operailin the state described by the wave
function , AA = A— (A), {A B} = AB+ BA denotes the anticommutator ahil B] =
AB — BA the commutator of the operatohsandB.

For the operators = x andpg = —i(%d/0x) we get after the straightforward calculation

5 {oxp}) = (64
1 feram [Ax( —in? - <ra>) ¥ (_ ind <Iﬁ>>Ax} el gy —
(3 ()
0X

Further, taking into account the commutation relatjgrp] = i%, relation (63) leads
to inequality (62). Therefore, relations (56) and (61) are stronger tifva corresponding
Heisenberg and Robertson—Schrodinger relations and yield more detddetiation in
terms of the mean square deviatiofféx)?), ((Ap1)?) and ((Apz)?). As mentioned in
the preceding section, the Heisenberg uncertainty relation (48) cantaieed from the
Robertson—Schrodinger relation (62) if the first term on the right-h&elaf Eq. (62) is
omitted.

We noted at the end of section 4. that the momentum can be in some casesmigate
by the functionp = 0s;/0x. For this representation, the commutaperp] equals zero
and the termi?/4 in the uncertainty relations (48) and (62) is replaced by zero. Since
the resulting relations are not in agreement with inequality (42), we see #Hgdirhis
representation of the momentum is incorrect.
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12. Continuity Equation

In contrast to standard mathematical statistics, probability depéityt) in quantum
mechanics depends on time. For particles with the infinite life time investigated in stan-
dard quantum mechanics normalization condition (1) is valid at all times from it in
measurement (or preparation of the system in the state given by the fiestiands, or,
equivalently, by the wave functiag) till the following measurement at later time. For this
reason, the continuity equation in three dimensions

op .
o +divj =0 (65)
analogous to the continuity equation known from classical continuum mshenust be
valid in quantum mechanics, too. In a similar way as in continuum mechanicgmwerde
the probability density current in the forim= pv, wherev = p/mis the velocity ang is
the momentum. As shown in section 3., the momenpuran be in this case represented by
the vectords; and we get

T
J—pV—pm—Pm‘ (66)
Using wave function (15) this formula can be written in form known fromrquen me-
chanics .
J:2mi<w DUJ—UJDQJ)- (67)

It is seen that in contrast to the kinetic energy or uncertainty relationss drer no
purely quantum terms in the quantum continuity equation and that this equasoitsha
analogue in classical continuum mechanics.

13. Conclusion

In this chapter, two approaches (a) statistical generalization of the Harddiwbi
equation of classical mechanics with the momenfpunds; /0x and the probability density
p(x,t) and (b) analogous approach following from the time Schrédinger equattbritve
momentum operatop = —i%(d/0x) have been compared. Only the bound states obeying
the boundary condition (2) have been discussed.

The function corresponding to the principal Hamilton act®appearing in standard
classical mechanics has been denoted in both cases (a) ands{loy,&s It has been as-
sumed that in the limip(x,t) — 8(X—Xg ) or i — 0, corresponding to transition to classical
mechanics with the trajectomy = Xq (t) the functions; leads to the same momentum as
the formula from classical mechanips= 0S/dx. Then, we have introduced the second real
functionsy(x,t) by the relatiorp = exp(—2s,/h). Instead of two real functiorsg ands; it
is then possible to introduce the complex wave functjor exp(isy — S2)/h] known from
guantum mechanics.

In case of the mean valuép) or (xp+ px) /2 the momentum can be represented either
by the functionp = ds; /dx or the momentum operatqr= —ih(0/0x) acting on the wave
function). However, in more complicated cases as in case of the kinetic energy these tw
representations of the momentum lead to different results.



418 L. Skéla, JCizek and V. Kapsa

The difference of the kinetic energies in cases (b) and (a) is givenégxpression
T, = [(8s2/0x)?pdx/(2m) = A2l /(8m), wherel = [(dp/0x)?/pdx = [(0sp/0X)?pdX is
the Fisher information, important quantity appearing in mathematical statistics:i3tner
information appears also in the inequaljtjx —a)?pdx | > 1, Eq. (42), known from math-
ematical statistics.

The Heisenberg and Robertson—Schrddinger uncertainty relationsikram quantum
mechanics follow from two stronger uncertainty relations (56) and (61).

First relation (56) can be understood as the inequality for the produerances of
the deviation of the coordinateand momentunp = ds; /0x from their mean values which
must be greater than or equal to the square of the covariance of theestitiqa. Therefore,
relation (56) has the well-known statistical meaning and appears in botbagh@s (a) and
(b).

Second relation (61) is equivalent to the above mentioned inequality (A&)ed-isher
information. It can be also understood as the inequality between the vesiamc co-
variances of the deviation of the coordinat@nd the functiords,/ox from their mean
values. However, the corresponding covariance is constant ardség@. The square of
the covariance then yields the constahf4 which appears at the right-hand side of the
Heisenberg uncertainty relation. Uncertainty relation (61) does notappapproach (a).

It follows from the Schwarz inequality that in any similarly formulated statisticabtiy
there is an inequality analogous to Eq. (42). Since there is no such relaappiioach (a),
this approach is from this point of view incorrect. In contrast to it, mathemaginacture
of quantum mechanics with the momentum operater ~i%(d/0x) is from this point of
view correct.

In contrast to the kinetic energy and uncertainty relations there are nallygjcantum
terms in the quantum continuity equation. The continuity equation in quantum miesha
can be introduced in analogy with the continuity equation known from cldssiciinuum
mechanics.

Finally we note that quantization known from quantum mechanics is conseegué
the statistical description used in the theory, differential form of the momepfpemator
p and boundary conditions applied to the wave functijon As it is known, only some
solutions of the Schrodinger equation obey these conditions and pogaiele &f quantum
systems can be quantized.

In summary, results of this chapter show that the basic mathematical strutturam
tum mechanics can be understood as generalization of classical mecinawigigh the
statistical character of results of measurement is taken into account amd$thémportant
general properties of statistical theories known from mathematical statisticemectly re-
spected. Itis not therefore surprising that quantum mechanics hasbesessfully applied
to a very large spectrum of systems in physics, chemistry, biology andfotuks.
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