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Chapter 15
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Abstract

Basic mathematical apparatus of quantum mechanics like thewave function, coordi-
nate and momentum operator, corresponding commutation relation, Schrödinger equa-
tion, kinetic energy, uncertainty relations and continuity equation is discussed from the
point of view of mathematical statistics. It is shown that the mathematical structure
of quantum mechanics can be understood as generalization ofclassical mechanics in
which the statistical character of results of measurement is taken into account and the
most important general properties of statistical theoriesare correctly respected.
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Keywords: quantum mechanics, mathematical statistics, Hamilton–Jacobi equation,
Schrödinger equation.

1. Introduction

Quantum mechanics and its meaning have been discussed in a large number ofpubli-
cations from many different points of view (see e.g. books [1, 2]). It shows that quantum
mechanics is, despite its numerous successful applications, in some respects counterintu-
itive and difficult to understand.

In this chapter, we discuss quantum mechanics from the point of view that isdifferent
from the previous ones and that can, as we hope, contribute to its better understanding. Our
aim is to compare (a) statistical approach to the Hamilton–Jacobi equation in which the
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probability densityρ(x, t) describing the statistical character of measurement of the coordi-
natex and momentump at timet is introduced (section 2.) and (b) analogous approach to the
Schrödinger equation in which the mean values of these quantities are calculated (section
6.). For the sake of simplicity, only the bound states having the property limx→±∞ xnρ = 0,
n = 0,1,2 are investigated. By comparing results of (a) and (b) we are then able to find dif-
ferences of both approaches and identify the terms that are present in quantum mechanics
only and do not appear in approach (a) based on classical mechanics.

In more detail, we show that results following from the Schrödinger equationare, in
contrast to those following from the Hamilton–Jacobi equation, in agreementwith general
structure of statistical theories. Therefore, quantum mechanics is from the point of view of
mathematical statistics formulated correctly.

Basic mathematical apparatus of quantum mechanics like the wave function, coordinate,
momentum operator, commutation relations and uncertainty relations is also discussed.

It is assumed that the momentum can be written in approach (a) in the formp = ∂s1/∂x,
wheres1 is a real function (sections 2.-4.). This expression is generalization of theexpres-
sion p = ∂S/∂x known from classical mechanics, whereS denotes the Hamilton principal
action. However, in more complicated cases like in case of the square of the momentum,
such representation of the momentum leads to results that are incorrect from the point of
view of the Schwarz inequality. In contrast to it, representation of the momentum by means
of the differential operator ˆp = −i~(∂/∂x) known from quantum mechanics (approach (b))
leads to formulas that are in agreement with this inequality.

In our statistical approach, the complex wave functionψ = exp[(is1− s2)/~] is only a
different way of writing the statistical information carried by two real functionss1(x, t) and
s2(x, t), whereρ = exp(−2s2/~) (section 3.). Its main advantage is simple formulation of
the theory in terms of the operators acting on the wave functionψ.

Further it is shown that the main differences of approaches (a) and (b)are closely re-
lated to the so-called Fisher informationI =

∫ ∞
−∞(∂ρ/∂x)2/ρdx introduced to mathematical

statistics in 1925, i.e. before the first of Schrödinger’s publications on quantum mechanics
(section 7.). It appears that the kinetic energy in quantum mechanics equals the kinetic
energy in approach (a) plus a term that is proportional to the Fisher information. This term
is responsible for the non-zero kinetic energy of the bound states in quantum mechanics
as is for example the ground state energy of the linear harmonic oscillator. Itshows that
this well-known quantum mechanical result is closely related to the statistical character of
quantum mechanics and representation of the momentum by the operator ˆp = −i~(∂/∂x).

Another typical quantum result is the existence of the uncertainty relations.We show
that the uncertainty relation for the coordinatex and momentum ˆp is closely related to the
Rao–Cramér inequality known from mathematical statistics that appear in any similarly
formulated statistical theory. The Heisenberg and Robertson–Schrödinger uncertainty rela-
tions for the coordinate and momentum and two new uncertainty relations that are stronger
than the original Heisenberg and Robertson–Schrödinger relations arefrom this point of
view discussed (sections 9.–11.).

The first uncertainty relation from the new ones has its classical analogy and can be
understood as the well-known inequality according to which the product ofvariances of
two quantities is greater than or equal to the square of their covariance. Atthe same time,
the square of the covariance can have arbitrary values greater than orequal to zero.
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The second uncertainty relation mentioned above is related to the Rao–Cramérinequal-
ity for the coordinatex and the Fisher informationI. It has the same meaning as the above
mentioned inequality between the variances and covariance; however, it appears that the
square of the covariance is independent of the statistical state of the system described by
the wave functionψ and equals~2/4. Therefore, the second uncertainty relation has no
classical analogy and is related to the differential form of the momentum operator.

The continuity equation in quantum mechanics is usually derived from the Schrödinger
equation. It is shown that this equation and the expression for the probability density current
can be obtained in analogy with classical continuum mechanics if the probabilitydensity
current is calculated from the expressionj = ρv, where the velocityv equalsv = p/m and
m is the mass (section 12.). Then, using the analogy of the expression for themomentum
known from classical mechanicsp = ∇S one gets the continuity equation of quantum me-
chanics. It shows that the continuity equation in quantum mechanics is analogous to the
continuity equation known from classical continuum mechanics.

2. Statistical Description of Results of Measurement

In this section, we discuss an important step making it possible to compare mathemat-
ical formalism of quantum and classical mechanics — statistical description ofresults of
measurement. More detailed discussion of this approach can be found in [3–6].

For the sake of simplicity, we consider only one spatial coordinatex and timet.
We note that measuring apparatus is not described in measurement on the microscopic

level and the measured system interacts with the measuring apparatus. Therefore, in agree-
ment with experimental experience, we assume that the distribution of the results of mea-
surement of the coordinatex at timet can be described by the probability densityρ(x, t)
obeying the normalization condition

∫

ρdx = 1, (1)

where the integration is performed from minus infinity to plus infinity. We assume also that
ρ has the property

lim
x→±∞

xnρ = 0, n = 0,1,2. (2)

Therefore, we limit ourselves to discussion of the so-called bound states obeying conditions
(2).

Further we suppose that the mean value〈x〉 of the coordinatex resulting from measure-
ment is given by the integral

〈x〉 =
∫

xρdx. (3)

In the limit
ρ(x, t) → δ(x− xcl) (4)

corresponding to transition to classical mechanics with the classical trajectory xcl = xcl(t)
the mean coordinate〈x〉 equalsxcl.

The mean value (3) takes into account the fact that measurement of the coordinatex
performed on different members of the statistical ensemble of systems in a given state (or



408 L. Skála, J.̌Cížek and V. Kapsa

in repeated measurement on one system in this state) leads in real experimentsto different
values ofx that has to be averaged with the corresponding statistical weightρ. Therefore,
the statistical ensemble considered here is the same as that used in quantum mechanics.

In classical mechanics, the motion of a particle is described by the Hamilton–Jacobi
equation [7,8]

(p−qA)2

2m
+V +

∂S
∂t

= 0, (5)

whereS = S(xcl, t) is the Hamilton principal action,xcl denotes the classical coordinate of
the particle,

p =
∂S

∂xcl
(6)

is the momentum of the particle,m andq are its mass and charge andA = A(xcl, t) and
V = V (xcl, t) denote the vector and scalar potential in one-dimension, respectively.

Statistical generalization of the last equation analogous to Eq. (3) can be in approach
(a) written in the form

〈p〉 =
∫

pρdx =
∫ ∂s1

∂x
ρdx, (7)

wheres1 = s1(x, t) is a new real function corresponding to the Hamilton functionS. It is
assumed that the functions1 leads forρ(x, t)→ δ(x−xcl) ands1→ S to the same momentum
as Eq. (6)

〈p〉 =
∂s1

∂xcl
=

∂S
∂xcl

. (8)

3. Momentum Operator

In this section, we introduce the wave functionψ and show that for calculating the mean
momentum〈p〉, the momentum can be represented either by the functionp = ∂s1/∂x used
in the preceding section or by the momentum operator ˆp = −i~(∂/∂x) acting on the wave
function.

We start from Eq. (7) and re-write it into the form

〈p〉 =
∫ ∂s1

∂x
ρdx =

∫

ρe−is1/~

(

− i~
∂
∂x

)

eis1/~dx. (9)

The constant~ > 0 could be an arbitrary real constant depending on the choice of units.
However, to get formulas that agree with quantum mechanics, we will assumethat ~ =
h/(2π) denotes the reduced Planck constant.

Further, we introduce a real functions2 = s2(x, t) by the equation

ρ = e−2s2/~ (10)

or equivalently

s2 = −~

2
lnρ. (11)

It follows from Eq. (2) that the integral
∫ ∂s2

∂x
ρdx = −~

2

∫ ∂
∂x

e−2s2/~dx = −~

2

∫ ∂ρ
∂x

dx = −~

2
ρ|∞x=−∞ = 0 (12)
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equals zero. Therefore, we can write the mean momentum also in the form

〈p〉 =
∫

e(−is1−s2)/~

(

− i~
∂
∂x

)

e(is1−s2)/~dx (13)

or

〈p〉 =
∫

ψ∗
(

− i~
∂
∂x

)

ψdx, (14)

where the functionψ equals
ψ = e(is1−s2)/~ (15)

and the star denotes the complex conjugate. The functionψ called usually the wave function
in quantum mechanics is in our approach only a different way of representing the state of
the particle described by the functionss1 ands2.

It is worth noting that our expression for the wave function (15) is similar to that of
Bohm [9,10]. However, we do not assume the existence of hidden variables here.

From Eq. (14) we get the usual expression for the mean momentum in the form

〈p̂〉 =
∫

ψ∗ p̂ψdx, (16)

where the momentum operator equals

p̂ = −i~
∂
∂x

. (17)

We note that representation of the momentum by the functionp = ∂s1/∂x used in Eq.
(7) does not depend on the derivative∂s2/∂x. It is correct in the limit of classical mechanics
for ρ(x, t) → δ(x− xcl) or ~ → 0+ when we can assumes1 → S. However, it seems to be
incorrect in a general case.

As shown in Eq. (12), the derivative∂s2/∂x does not contribute to the mean momentum
〈p̂〉 and the mean momentum can be calculated either from Eq. (7) or Eq. (16). There-
fore, both representations of the momentump = ∂s1/∂x and p̂ = −i~(∂/∂x) are in this
case equivalent. However, they can give different results in more complicated cases. This
question is discussed in the following sections in detail.

4. Mean Value of xp

In this section, we investigate the mean value of the product of the coordinateand
momentum which is important in the uncertainty relations.

We calculate the quantum-mechanical mean value

〈xp̂+ p̂x〉
2

=
1
2

∫

ψ∗
[

x

(

− i~
∂
∂x

)

+

(

− i~
∂
∂x

)

x

]

ψdx. (18)

Using Eq. (15) for the wave function we get

〈xp̂+ p̂x〉
2

=
1
2

∫

e(−is1−s2)/~

[

2x

(

− i~
∂
∂x

)

− i~

]

e(is1−s2)/~dx. (19)
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Now we calculate the integral
∫

e(−is1−s2)/~x

(

− i~
∂
∂x

)

e(is1−s2)/~dx =
∫

x
∂s1

∂x
e−2s2/~dx+ i

∫

x
∂s2

∂x
e−2s2/~dx. (20)

Using integration by parts in the last integral and Eqs. (1) and (2) we obtain
∫

x
∂s2

∂x
e−2s2/~dx = x

−~

2
e−2s2/~|∞x=−∞ +

~

2

∫

e−2s2/~dx =
~

2
. (21)

The resulting formula

〈xp̂+ p̂x〉
2

=
∫

x
∂s1

∂x
e−2s2/~dx =

∫

x
∂s1

∂x
ρdx (22)

agrees with the statistical generalization of the expressionx(∂S/∂xcl) from classical me-
chanics

〈xp〉 =
∫

x
∂s1

∂x
ρdx (23)

in which the classical momentum∂S/∂xcl is replaced by∂s1/∂x and the probability density
ρ is taken into account.

Summarizing the results of the last two sections we see that contribution of the function
∂s2/∂x to the mean values〈p̂〉 and〈xp̂+ p̂x〉/2 equals zero and the momentum operator can
be in these cases represented by the functionp = ∂s1/∂x. Therefore, the quantum mechan-
ical expressions for the mean coordinate〈x〉, mean momentum〈p̂〉 and their symmetrized
product in the form〈xp̂ + p̂x〉/2 give the same results as Eqs. (3), (7) and (23). How-
ever, in more complicated cases as for example in case of the square of the momentum the
derivative∂s2/∂x plays the important role and the two representations of the momentum
p = ∂s1/∂x and p̂ = −i~(∂/∂x) lead to different results (see section 6.).

5. Commutation Relation between Coordinate and Momentum

It has been shown in the preceding section that the mean value〈xp̂ + p̂x〉/2 can be
calculated from Eq. (23) in which the coordinatex and momentump = ∂s1/∂x commute

〈xp〉 =
∫

x
∂s1

∂x
ρdx = 〈px〉. (24)

The fact that the coordinatex and momentump = ∂s1/∂x commute agrees with our experi-
ence from macroworld. However, it is in contradiction with experimental evidences known
from microworld according to which results of measurement of the coordinate and momen-
tum depend on the order in which measurement is performed (for generaldiscussion see
e.g. [11]). It shows that representation of the momentum by the functionp = ∂s1/∂x is not
in microworld usable.

If we use the differential representation of the momentum (17), application of the com-
mutator[x, p̂] to the wave function yields the commutation relation

[x, p̂] = i~ (25)

known from quantum mechanics.
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6. Hamilton–Jacobi and Schrödinger Equations

To compare approaches (a) and (b), we first replace the actionS in the Hamilton–Jacobi
equation (5) by the functions1 as in section 2., multiply the equation by the probability
densityρ = exp(−2s2/~) and integrate the result overx from minus infinity to plus infinity
(see also [6])

∫

[

(∂s1/∂x−qA)2

2m
+V +

∂s1

∂t

]

e−2s2/~dx = 0. (26)

Now we perform analogous steps with the time Schrödinger equation [12]

[

(p̂−qA)2

2m
+V

]

ψ = i~
∂ψ
∂t

. (27)

Multiplying the last equation from the left-hand side byψ∗ and integrating overx from
minus infinity to plus infinity we can write the result in the form (see also [6])

∫

[ |(p̂−qA)ψ|2
2m

+V |ψ|2−ψ∗i~
∂ψ
∂t

]

dx = 0. (28)

Using Eq. (15) for the wave function and Eq. (17) for the momentum operator we get

(p̂−qA)ψ =

(

∂s1

∂x
+ i

∂s2

∂x
−qA

)

e(is1−s2)/~ (29)

and

|(p̂−qA)ψ|2 =

[(

∂s1

∂x
−qA

)2

+

(

∂s2

∂x

)2]

e−2s2/~. (30)

Analogously, we obtain

ψ∗i~
∂ψ
∂t

= −
(

∂s1

∂t
+ i

∂s2

∂t

)

e−2s2/~. (31)

Therefore, Eq. (28) can be written as

∫

[

(∂s1/∂x−qA)2 +(∂s2/∂x)2

2m
+V +

∂s1

∂t
+ i

∂s2

∂t

]

e−2s2/~dx = 0. (32)

Due to Eq. (1) the integral

∫ ∂s2

∂t
e−2s2/~dx = −~

2
∂
∂t

∫

e−2s2/~dx = 0 (33)

equals zero and the resulting equation

∫

[

(∂s1/∂x−qA)2 +(∂s2/∂x)2

2m
+V +

∂s1

∂t

]

e−2s2/~dx = 0 (34)

can be compared with Eq. (26).
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We see that Eq. (34) following from the Schrödinger equation differs from Eq. (26)
only by the term

1
2m

∫

(

∂s2

∂x

)2

e−2s2/~dx (35)

representing a part of the kinetic energy depending on the shape of the probability density
ρ given by∂s2/∂x. This term disappears either in the limit of classical mechanics when we
can assumeρ(x, t) → δ(x− xcl) and∂s2/∂x → 0 [6] or if the function(∂s2/∂x)2 has very
small values. This term is not present in Eq. (26). It has purely quantumcharacter and is
related to the so-called Fisher information discussed in the following section.

7. Fisher Information

The Fisher information is a very important quantity appearing in mathematical statistics
(see e.g. [13, 14]). In our case, it can be introduced in the following simple way (see also
[3,5,15–17]).

We start with normalization condition (1) for the probability densityρ in which we
perform integration by parts and use Eq. (12)

[

(x−a)ρ
]∞

x=−∞ −
∫

(x−a)
∂ρ
∂x

dx = 1, (36)

wherea is an arbitrary real number. Taking into account Eq. (2) we get the starting point of
the following discussion

∫

(x−a)
∂ρ
∂x

dx = −1. (37)

Now we make use of the Schwarz inequality for the inner product(u,v) =
∫

u∗vdx of
two complex functionsu andv

(u,u)(v,v) ≥ |(u,v)|2. (38)

Putting

u = (x−a)
√

ρ, v =
1√ρ

∂ρ
∂x

(39)

and using inequality (38) we get

∫

(x−a)2ρdx
∫

1
ρ

(

∂ρ
∂x

)2

dx ≥ 1, (40)

where the second integral is called the Fisher informationI

I =
∫

1
ρ

(

∂ρ
∂x

)2

dx. (41)

Inequality (40) is usually written in the form [13]
∫

(x−a)2ρdx I ≥ 1. (42)
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This result is very general and does not depend on the concrete meaning of the variablex.
Interpretation of the last inequality is similar to that of the uncertainty relations in quantum
mechanics since for givenI the integral

∫

(x−a)2ρdx cannot be smaller than 1/I and vice
versa. The minimum of

∫

(x−a)2ρdx is obtained fora = 〈x〉.
We note that inequality (42) in a more general form is known in mathematical statis-

tics as the Rao–Cramér inequality [14, 18–20]. Hence, any similarly formulated statistical
theory has to lead to inequality (42) or an analogous one.

Using the expressionρ = exp(−2s2/~) for the probability density the Fisher informa-
tion can be written in the equivalent form

I =
4
~2

∫

(

∂s2

∂x

)2

e−2s2/~dx (43)

which will appear in the following discussion.

8. Kinetic Energy

Now, we express the mean kinetic energy appearing in Eq. (34)

T =
∫

(∂s1/∂x−qA)2 +(∂s2/∂x)2

2m
e−2s2/~dx (44)

as a sum of two terms
T = T1 +T2, (45)

where

T1 =
∫

(∂s1/∂x−qA)2

2m
e−2s2/~dx (46)

and

T2 =
~

2I
8m

. (47)

The first part of the kinetic energyT1 depending on∂s1/∂x is the same as the kinetic
energy appearing in Eq. (26). The second part of the kinetic energyT2 depending on∂s2/∂x
is proportional to the Fisher informationI and does not appear in Eq. (26).

We note also that, in contrast to classical mechanics, the kinetic energyT for the bound
states obeying condition (2) cannot equal zero.

9. Heisenberg Uncertainty Relations

In this and the following two sections we discuss the uncertainty relations known from
quantum mechanics and their relation to inequality (42).

For the sake of simplicity, we assume that the potentialA equals zero. The Heisenberg
uncertainty relation [21] for the coordinatex and momentump has then the form

〈(∆x)2〉〈(∆p)2〉 ≥ ~
2

4
, (48)
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where
〈(∆x)2〉 =

∫

(x−〈x〉)2|ψ|2dx (49)

and

〈(∆p)2〉 =
∫

∣

∣

∣

∣

(

− i~
∂
∂x

−〈p̂〉
)

ψ
∣

∣

∣

∣

2

dx. (50)

Discussion of the mutual relation of the Heisenberg uncertainty relation (48)and relation
(42) for the Fisher information can be found for example in [5,22].

Using Eqs. (12), (15) and (43) we get

〈(∆p)2〉 = 〈(∆p1)
2〉+ 〈(∆p2)

2〉, (51)

where

〈(∆p1)
2〉 =

∫

(

∂s1

∂x
−

〈

∂s1

∂x

〉)2

e−2s2/~dx (52)

and

〈(∆p2)
2〉 =

∫

(

∂s2

∂x

)2

e−2s2/~dx =
~

2

4
I. (53)

We see that, analogously to the kinetic energyT , the mean square deviation of the momen-
tum 〈(∆p)2〉 can be split into two parts.

The first part〈(∆p1)
2〉 can be interpreted within the statistical generalization of classical

mechanics described above in which the classical momentump = ∂S/∂xcl is replaced by
∂s1/∂x and the probability densityρ = exp(−2s2/~) is introduced (approach (a)).

The second part〈(∆p2)
2〉 is proportional to the Fisher informationI given by Eq. (43).

We note also that for〈(∆p1)
2〉= 0 the Heisenberg uncertainty relation (48) can be re-written

in form of inequality (42) for the Fisher information witha = 〈x〉.
We see that the constant~

2/4 at the right-hand side of the Heisenberg uncertainty rela-
tion (48) has the same origin as the right-hand side of inequality (42). Therefore, existence
of the Heisenberg uncertainty relation (48) is closely related to the statistical description of
results of measurement of the coordinatex by means of the probability densityρ and the
differential form of the momentum operator ˆp (approach (b)). This point is discussed in the
following section in more detail.

10. Two New Uncertainty Relations

According to the well-known result of mathematical statistics, the product of variances
of two quantities is greater than or equal to the square of their covariance [20]. For the
following two cases it is equivalent to the Schwarz inequality (38) with a suitable choice of
the functionsu andv.

Now we show that the Heisenberg uncertainty relation can be replaced by two uncer-
tainty relations for〈(∆p1)

2〉 and〈(∆p2)
2〉 (see also [23,24]).

First, we take
u = ∆x

√
ρ (54)
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and

v =

(

∂s1

∂x
−

〈

∂s1

∂x

〉)√
ρ. (55)

Then, the Schwarz inequality yields the first uncertainty relation

〈(∆x)2〉〈(∆p1)
2〉 ≥

[

∫

∆x

(

∂s1

∂x
−

〈

∂s1

∂x

〉)

e−2s2/~dx

]2

. (56)

As it follows from section 4., the function∂s1/∂x in the last integral represents in this
case the classical momentum and this relation has the usual above mentioned meaning
known from mathematical statistics. Depending on the functionss1 ands2, the square of
the covariance of the coordinate and momentum at the right-hand side of this relation can
have arbitrary values greater than or equal to zero.

The second uncertainty relation can be obtained in an analogous way for

u = ∆x
√

ρ (57)

and

v =

(

∂s2

∂x
−

〈

∂s2

∂x

〉)√
ρ (58)

with the result

〈(∆x)2〉〈(∆p2)
2〉 ≥

[

∫

(x−〈x〉)
(

∂s2

∂x
−

〈

∂s2

∂x

〉)

e−2s2/~dx

]2

. (59)

The right-hand side of this relation can be due to Eq. (12) simplified

〈(∆x)2〉〈(∆p2)
2〉 ≥

(

∫

x
∂s2

∂x
e−2s2/~dx

)2

. (60)

Then, Eq. (21) leads to the final form of the second uncertainty relation

〈(∆x)2〉〈(∆p2)
2〉 ≥ ~

2

4
. (61)

This uncertainty relation follows from the Schwarz inequality in a similar way as the first
one, however, the covariance(u,v) is in this case constant and equals~/2> 0 independently
of the concrete form of the functions2. We note also that relation (61) is for〈x〉 = a
equivalent to relation (42) for the Fisher information.

We see that the Heisenberg uncertainty relation (48) can be replaced by two more de-
tailed uncertainty relations (56) and (61). First uncertainty relation (56) can be understood
as the standard statistical inequality between the coordinatex and momentum represented
by the functionp = ∂s1/∂x. Second uncertainty relation (61) can be understood as the
standard statistical inequality, too. However, because of the specific form of the covari-
ance(u,v) which equals~/2 independently ofs2, the left-hand side of this relation must be
greater than or equal to~2/4.

Similar uncertainty relations can be derived also in the multidimensional case [23, 24]
and for the mixed states described by the density matrix [24].
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The sum of uncertainty relations (56) and (61) gives the relation

〈(∆x)2〉〈(∆p)2〉 ≥
[

∫

∆x

(

∂s1

∂x
−

〈

∂s1

∂x

〉)

e−2s2/~dx

]2

+
~

2

4
. (62)

The Heisenberg uncertainty relation (48) can be obtained from this relationby neglecting
the first term on its right-hand side. Therefore, uncertainty relations (56) and (61) are
stronger than the corresponding Heisenberg uncertainty relation (48).

11. Robertson–Schrödinger Uncertainty Relation

Relationship of uncertainty relations (56) and (61) to the Robertson–Schrödinger un-
certainty relation [25–28] can be clarified as follows.

For the linear hermitian operatorŝA andB̂, the Robertson–Schrödinger uncertainty re-
lation can be written in the form

〈(∆Â)2〉〈(∆B̂)2〉 ≥ 1
4

(

〈{∆Â,∆B̂}〉2 +
∣

∣〈[Â, B̂]〉
∣

∣

2)
, (63)

where〈Â〉 = 〈ψ|Âψ〉 is the mean value of the operatorÂ in the state described by the wave
function ψ, ∆Â = Â − 〈Â〉, {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator and[Â, B̂] =
ÂB̂− B̂Â the commutator of the operatorsÂ andB̂.

For the operators ˆx = x and p̂ = −i(~∂/∂x) we get after the straightforward calculation

1
2
〈{∆x,∆ p̂}〉 = (64)

=
1
2

∫

e(−is1−s2)/~

[

∆x

(

− i~
∂
∂x

−〈p̂〉
)

+

(

− i~
∂
∂x

−〈p̂〉
)

∆x

]

e(is1−s2)/~dx =

=
∫

∆x

(

∂s1

∂x
−

〈

∂s1

∂x

〉)

e−2s2/~dx.

Further, taking into account the commutation relation[x, p̂] = i~, relation (63) leads
to inequality (62). Therefore, relations (56) and (61) are stronger than the corresponding
Heisenberg and Robertson–Schrödinger relations and yield more detailedinformation in
terms of the mean square deviations〈(∆x)2〉, 〈(∆p1)

2〉 and 〈(∆p2)
2〉. As mentioned in

the preceding section, the Heisenberg uncertainty relation (48) can be obtained from the
Robertson–Schrödinger relation (62) if the first term on the right-hand side of Eq. (62) is
omitted.

We noted at the end of section 4. that the momentum can be in some cases represented
by the functionp = ∂s1/∂x. For this representation, the commutator[x, p] equals zero
and the term~

2/4 in the uncertainty relations (48) and (62) is replaced by zero. Since
the resulting relations are not in agreement with inequality (42), we see againthat this
representation of the momentum is incorrect.
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12. Continuity Equation

In contrast to standard mathematical statistics, probability densityρ(x, t) in quantum
mechanics depends on time. For particles with the infinite life time investigated in stan-
dard quantum mechanics normalization condition (1) is valid at all times from the initial
measurement (or preparation of the system in the state given by the functions s1 ands2 or,
equivalently, by the wave functionψ) till the following measurement at later time. For this
reason, the continuity equation in three dimensions

∂ρ
∂t

+divj = 0 (65)

analogous to the continuity equation known from classical continuum mechanics must be
valid in quantum mechanics, too. In a similar way as in continuum mechanics, we can write
the probability density current in the formj = ρv, wherev = p/m is the velocity andp is
the momentum. As shown in section 3., the momentump can be in this case represented by
the vector∇s1 and we get

j = ρv = ρ
p
m

= ρ
∇s1

m
. (66)

Using wave function (15) this formula can be written in form known from quantum me-
chanics

j =
~

2mi

(

ψ∗∇ψ−ψ∇ψ∗
)

. (67)

It is seen that in contrast to the kinetic energy or uncertainty relations, there are no
purely quantum terms in the quantum continuity equation and that this equation has its
analogue in classical continuum mechanics.

13. Conclusion

In this chapter, two approaches (a) statistical generalization of the Hamilton-Jacobi
equation of classical mechanics with the momentump = ∂s1/∂x and the probability density
ρ(x, t) and (b) analogous approach following from the time Schrödinger equation with the
momentum operator ˆp = −i~(∂/∂x) have been compared. Only the bound states obeying
the boundary condition (2) have been discussed.

The function corresponding to the principal Hamilton actionS appearing in standard
classical mechanics has been denoted in both cases (a) and (b) ass1(x, t). It has been as-
sumed that in the limitρ(x, t)→ δ(x−xcl) or ~→ 0+ corresponding to transition to classical
mechanics with the trajectoryxcl = xcl(t) the functions1 leads to the same momentum as
the formula from classical mechanicsp = ∂S/∂x. Then, we have introduced the second real
functions2(x, t) by the relationρ = exp(−2s2/~). Instead of two real functionss1 ands2 it
is then possible to introduce the complex wave functionψ = exp[(is1− s2)/~] known from
quantum mechanics.

In case of the mean values〈p〉 or 〈xp̂+ p̂x〉/2 the momentum can be represented either
by the functionp = ∂s1/∂x or the momentum operator ˆp = −i~(∂/∂x) acting on the wave
functionψ. However, in more complicated cases as in case of the kinetic energy these two
representations of the momentum lead to different results.
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The difference of the kinetic energies in cases (b) and (a) is given by the expression
T2 =

∫

(∂s2/∂x)2ρdx/(2m) = ~
2I/(8m), whereI =

∫

(∂ρ/∂x)2/ρdx =
∫

(∂s2/∂x)2ρdx is
the Fisher information, important quantity appearing in mathematical statistics. TheFisher
information appears also in the inequality

∫

(x−a)2ρdx I ≥ 1, Eq. (42), known from math-
ematical statistics.

The Heisenberg and Robertson–Schrödinger uncertainty relations known from quantum
mechanics follow from two stronger uncertainty relations (56) and (61).

First relation (56) can be understood as the inequality for the product ofvariances of
the deviation of the coordinatex and momentump = ∂s1/∂x from their mean values which
must be greater than or equal to the square of the covariance of these quantities. Therefore,
relation (56) has the well-known statistical meaning and appears in both approaches (a) and
(b).

Second relation (61) is equivalent to the above mentioned inequality (42) for the Fisher
information. It can be also understood as the inequality between the variances and co-
variances of the deviation of the coordinatex and the function∂s2/∂x from their mean
values. However, the corresponding covariance is constant and equals~/2. The square of
the covariance then yields the constant~

2/4 which appears at the right-hand side of the
Heisenberg uncertainty relation. Uncertainty relation (61) does not appear in approach (a).

It follows from the Schwarz inequality that in any similarly formulated statistical theory
there is an inequality analogous to Eq. (42). Since there is no such relation inapproach (a),
this approach is from this point of view incorrect. In contrast to it, mathematical structure
of quantum mechanics with the momentum operator ˆp = −i~(∂/∂x) is from this point of
view correct.

In contrast to the kinetic energy and uncertainty relations there are no typically quantum
terms in the quantum continuity equation. The continuity equation in quantum mechanics
can be introduced in analogy with the continuity equation known from classical continuum
mechanics.

Finally we note that quantization known from quantum mechanics is consequence of
the statistical description used in the theory, differential form of the momentumoperator
p̂ and boundary conditions applied to the wave functionψ. As it is known, only some
solutions of the Schrödinger equation obey these conditions and possible states of quantum
systems can be quantized.

In summary, results of this chapter show that the basic mathematical structure of quan-
tum mechanics can be understood as generalization of classical mechanicsin which the
statistical character of results of measurement is taken into account and themost important
general properties of statistical theories known from mathematical statistics are correctly re-
spected. It is not therefore surprising that quantum mechanics has been successfully applied
to a very large spectrum of systems in physics, chemistry, biology and otherfields.

This work was supported by the MSMT grant No. 0021620835 of the Czech Republic.
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