WDS’08 Proceedings of Contributed Papers, Part III, 660-664, 2008. ISBN 80-86732-18-5 © MATFYZPRESS

Convergent perturbation theory for multi-dimensional
anharmonic oscillators

M. Simének, L. Skéla, J. Zamastil
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

Abstract. In this paper we analyze the Rayleigh-Schrodinger perturbation theory
(RSPT) for anharmonic oscillators. Reasons of the divergence of the standard
RSPT expansion are described. Possible analysis of the multidimensional cases is
suggested.

Introduction

It is known that many physical problems can be approximately modeled as (systems of)
linear harmonic oscillators (LHO), E.g. in vibrational spectra analysis. However LHO approx-
imation has often limited usability, because the system far from ground state has behavior
significantly different from LHO. It is better to model such situations using some type of anhar-
monical oscillator(s) i.e. oscillators which potential is different from 2. Instead of the functions
describing known potentials, it is possible to substitute (sometimes conveniently truncated) Tay-
lor series into the potential part of Hamiltonian. From this point of view, we wold like to solve
the eigenproblem of the form

7
[—% + 22 + B12® + Baz + B3z’ .. ] ¥ = Ey. (1)

Only few terms of the infinite series are often used to describe concrete physical potential.
Because the behavior of this finite sum strongly depends on the term with the highest power,
it is interesting to study the simplified problem

2

If there is no coupling between parts describing single independent variables, this equation can
be extended to multi-dimensional problems.

Usually, perturbation methods are based on introducing a small parameter S into this
problem. The problem must be solvable for § = 0. Solution of the original equation is then
assumed in form of the power series in 5. We will attempt to extend known methods to more
dimensional problems, which are needed for the solution of more general physical problems.

In this paper, we will discuss the eigenproblem

[—% +2°+ ﬂw4] ¥ = E(B)y. (3)

Studying this problem we can explain the most important general features of the perturbation
series. It can also be extended to more dimensions and applied to E.g. molecular vibration
analysis. We are going to describe here shortly some features of the perturbation expansions
and an elegant method called renormalization.

Renormalization

It was shown in [W. J. Weniger, 1996], [L. Skdla, J. Cizek, E. J. Weniger, 1997], (L.
Skdla, J. Cizek, J. Zamastil, 1999] that it is convenient to study the so-called renormalized
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model. Renormalization is in fact suitable scaling transformation, which changes behavior of
the perturbation expansion to a more convenient case. We will use the transformation

z— (1 —r)Yig (4)

in the explored eigenproblem (3). After applying this substitution, Eq. (3) becames

_ﬁ 2 x_4 e By = 0. NS

s +a?+n 22| |9 = (1 - x)2E(B)y. (5)
dx 3

and the renormalized energy Fr(x) and the renormalized coupling constant x can be introduced

by relations

Er(k) = (1-k)'2E(B) ,
(6)

PR
3(1 - k)32

Number ”3” in the denominator is a result of physically based optimization of 8 vs.  relation,
and need not be discussed here.

The reformulated eigenvalue problem (5) has the following advantages in comparison with
the original problem (3). First, the original unbounded interval of the coupling constant 8 €
(0,00) is transformed onto the bounded interval x € (0,1). Second, the original energy E(J)
goes to infinity for B going to infinity. In contrast to it, the renormalized energy Eg(x) remains
finite at the point K = 1 corresponding to the point 8 = oo

Er(k = 1) = (1 - 6)V2E(B = 00) = (1 — k)2 KB/ = Ko /313, (7)

B=

where K is finite number.

Perturbation expansions

Usually two types of the perturbation series, called ”the strong coupling expansion” and
"the weak coupling expansion” are used.

Weak coupling

Expanding the energy Fr(x) into the power series in the coupling constant x we get the
so-called weak coupling expansion

3 108 b} ®)

n=0
A bad feature of this expansion is that it diverges for an arbitrary value of the coupling constant

k € (0,1) and, consequently, 8 € (0,00). However, the expansion coefficients are relatively easy
evaluable. In the table one can see some of the expansion coefficients.

n an

1 -0.25000000000000

2 -0.02083333333333

3 0.01562500000000

5 0.06576425057870

10 | -46.68774596378166
20 | -0.22202683909984 x 1011
50 | -0.16582982439360 x 1048

Table the of ezpansion coefficients an. We can see that this series diverges.
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Strong coupling

Reordering Eq. (5) we can expand the energy Egr(k) into the power series in 1 — k, and
obtain the so-called strong coupling expansion

En() = Y Tn(1 - )" 9)
n=0

which converges for | 1 — £ |< 1. The expansion coefficients I';, cannot be calculated as easily
as the a, coeffitients. Some of them are displayed in the following table.

n I,

1 0.2770556728799470

2 -0.0111788972096450

3 -0.0004661493115821

5 -0.0001480652568073

10 | -0.8820357960483973x 10>
20 | -0.1711400738708880x 106
50 | -0.7635552518836174x 10710

Table of the expansion coefficients T',. This series converges.

We will try to explain some reasons of the convergence of Eq. (9) and divergence of Eq.
(8) in the following paragraph. There is a theory that clarifies why some expansions converge
and others diverge. We will mention only a little part of them. Details can be found in [C. M.
Bender -a, 1969], [C. M. Bender -b, 1973], [T. Banks -a,b, 1973], [E. Vrscay, 1989], [B. Simon,
1970] .

Reasons of convergence and divergence

Regular perturbation problem is a problem, whose perturbation series is a power series in
perturbation parameter 3 having a non-vanishing radius of convergence. Singular perturbation
problem is a problem, whose perturbation series does not have the form of a power series or,
if it does, the power series has a zero radius of convergence. Unperturbed part in the singular
perturbation theory may not have a solution, or when it exist, its qualitative features are
distinctly different from those of the exact solution for arbitrary small, but nonzero 3.

Large number of practically used perturbation series has characteristic behavior — trun-
cated series tends first to the exact solution, but there exists a turning point from which the
series begins to diverge.

Reason of divergence of the perturbation series of (2) was found by Bender, Wu and Simon
[C. M. Bender -a, 1969], [B. Simon, 1970], [C. M. Bender -b, 1973]. They found that Eg(x)
assumed as a function of complex parameter x has a cut on the negative real axis. There are
also other singularities in the complex x plane, having effect on the non-vanishing radius of
convergence.

We can see that Eq. (9) is a regular perturbation problem and Eq. (8) is a singular
perturbation problem (see Fig. 1). Short look at this two expansions shows (see Fig. 1) that
expansion (8) is expanded in the point 0, in contrast to it, expansion (9) is expanded at the
point 1. We can see that the expansion at 0 has vanishing radius of convergence due to presence
of the cut on the negative real axis. Hamiltonian Hp = p? + 22 + x(2*/3 — 2?) does not have
bound states for & < 0 and the energy Er(k) is not analytic at the point x = 0. Therefore, this
expansions is not convergent Taylor series and diverges for arbitrary x € (0,1).

Expansion at the point 1 has radius of convergence 1. It follows from the analytic structure
of Er(k) that Er(k) is analytic in the circle |1 — x| < 1 in the complex x-plane. Therefore, the

662




M. SIMANEK, L. SKALA, J. ZAMASTIL: ANHARMONICAL OSCILLATORS

series Eg(k) = Y., ['n(1 — k)" is a convergent Taylor series for all |1 — k| < 1. The hamiltonian
Hg =p*+2*/3 + (1 — 6)(2? — 2*/3) becomes for 1 — k < 0 the hamiltonian of the double-well
problem that has bound states and the energy Eg(x) is at the point k¥ = 1 analytic.

A}

\

o} 1 !
; 1
QY :

Figure 1. Analytic structure of the energy plane E(x). The dashed circle is the circle of convergence of
perturbation series constructed at the point 1. The ”+” marks are some poles. There is a cut on the negative
real azis (thick line). The discontinuity of the energy on the negative real azis is twice the imaginary part of the
energy. The imaginary part of the energy is related to the half-lifetime of the state. The curves at the bottom
of the picture are qualitative plots of the potentials, depending on the value of the real part of the perturbation
parameter. The right-arrow shows the character of the double-well with increasing the real part of the parameter
K.

Conclusion

Multi-dimensional problems may be divided into three groups. The potentials of the first
group doesn’t contain any mixed terms i.e. terms containing more than one variable. In this
case, the task may be easily separated into many one-dimensional problems the solution of
which can be calculated separately.

The potentials of the second group contain mixed terms. They seems not to be convertible
to previously mentioned group, general method of solution such eigenproblems is not known
yet.

In the third case, these terms can be partially separated to a number of low-dimensional
systems, whose dimension may exceed one. These systems can be partially separated and solved
as above.

We hope that there is a perspective to extend the one-dimensional model to multidimen-
sional ones. It was shown in [W. Janke, 1990] that the problem of the hydrogen atom in external
magnetic field can be converted to the problem of the coupled harmonics oscillators. For this
reason we started study the two-dimensional eigenproblem of the form

[p2 402 + 22 + 92 + Aa* + o + 2c0%) | ¢ = By (10)
which is usefull in the analysis of the Zeeman effect.
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