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1. INTRODUCTION

Quantum mechanics is one of the most completely
tested physical theories (see, e.g., [1–4]). At the same
time, the standard approach to introducing quantum
mechanics based on the sometimes contraintuitive pos-
tulates does not clarify the roots of quantum mechanics
and the exact physical meanings of the postulates and
their interpretation is the subject of continuing discus-
sion (see, e.g., [5–25]). It is not satisfactory and, in our
opinion, it is necessary to concentrate on a more direct
description of the probabilistic character of measure-
ments and its consequences. Such an approach can clar-
ify the most important assumptions made in quantum
mechanics and contribute to understanding quantum
mechanics as a probabilistic theory of certain class of
physical phenomena.

In this paper, we do not want to develop a new inter-
pretation of quantum mechanics. Rather, we would like
to contribute to the understanding of the standard, or
Copenhagen, interpretation by illuminating its basic
ideas by means of the probabilistic description of mea-
surements. It is to be noted that the approach used in
this paper is different from that usually used in physics.
To explain experimental results, one introduces some
physical quantities and equations of motion for these
quantities. Then, the consequences of these equations
are investigated and compared with results of measure-
ments and this procedure is repeated. The probabilistic
character of physical phenomena in the quantum world
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is well-known and has to be respected in any attempt at
understanding quantum mechanics. Therefore, we
describe results of measurements in a probabilistic way
and ask the question of what the mathematical appara-
tus is that can describe this situation in the simplest
manner. Using such probabilistic or information theo-
retical approach, the basic mathematical structure of
quantum mechanics, except for equations of motion, is
obtained. Equations of motion are found from the
requirement of the relativistic invariance of the theory.
This paper is a substantially extended version of the
papers [26]. A slightly different approach based on the
principle of extreme physical information was used by
Frieden, who derived the most important equations of
motion in physics (see [15]).

In this paper, we do not discuss measurement pro-
cesses in detail and assume that measuring apparatuses
for measuring spatial coordinates and time exist. Mod-
els based on the probabilistic description of the mea-
sured system and measuring apparatus interacting with
the thermodynamic bath can be found, for example, in
[27, 28], see also [29].

Most likely, the best approach is to start with mea-
surement of the spatial coordinates and time. In this
paper, we show that the basic mathematical structure of
quantum mechanics, like the probability amplitudes,
the Born rule, commutation and uncertainty relations,
probability density current, kinetic energy, the momen-
tum operator, or the rules for including the scalar and
vector potentials and antiparticles, can be obtained
from the probabilistic description of results of measure-
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ment of the spatial coordinates and time by means of
the probability density and probability density current
(Sections 2–11). Equations of the motion of quantum
mechanics, the Klein–Gordon equation, and the Dirac
equation are obtained from the requirement of the rela-
tivistic invariance of the generalized space–time Fisher
information (Section 12). The Schrödinger equation is
known to be the nonrelativistic limit of the Klein–Gor-
don equation. The limit case of the localized probability
densities yields the Hamilton–Jacobi equation of clas-
sical mechanics (Section 13). Generalization to many-
particle systems is performed in Section 14. Postulates
of quantum mechanics are discussed in Section 15.

2. PROBABILITY DENSITY 
AND THE BORN RULE

Physical experiments show that results of measure-
ments very often have a probabilistic character, which
is related to the well-known experimental conditions of
measurements. The interaction of the measured system
with the measuring apparatus and the rest of the world
cannot, in general, be neglected, as measuring appara-
tuses are not described in detail but rather only on the
macroscopic level, real physical detectors have limited
resolution and efficiency, the experimental control of
the initial conditions is limited, etc. As a result, the res-
olution of physical experiments is always limited and
the assumption that measurements can be arbitrarily
exact (made for example in classical mechanics) is not
valid. Therefore, results of measurements must be
described in a probabilistic manner (see, e.g., [17, 23]).

General definition of the mean value of a real phys-
ical quantity 

 

A

 

 can be written either in the continuous,

,

 

(1)

 

or discrete form,

 

(2)

 

Here, 

 

A

 

 resp. 

 

A

 

i

 

 denotes the continuous resp. discrete
values of the quantity 

 

A

 

 that can be obtained in mea-
surements and 

 

ρ

 

(

 

A

 

) resp. 

 

ρ

 

i

 

 are the relative weights of
the corresponding probabilistic distributions.

To be more concrete, we will first discuss the mea-
surement of the coordinate 

 

x

 

. Results of repeated mea-
surements of the coordinate 

 

x

 

 can be, in physically rea-
sonable cases, characterized by the mean values of the
moments

 

(3)

 

where integration is carried out over the whole space,

 

dV

 

 = 

 

dxdydz
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density to obtain the coordinate 

 

x

 

 in measurement made
at time 

 

t

 

,

 

(4)

 

This normalization condition is supposed to be valid at
all times 

 

t

 

.
First, we perform the integration by parts with

respect to the variable 

 

x

 

 in Eq. (3) and get

 

(5)

 

Assuming that the first term in this equation equals zero
for physically reasonable 

 

ρ

 

, we get

 

(6)

 

We will show that this simple result has consequences
that are interesting from the point of view of the basic
structure of quantum mechanics.

The last equation can be rewritten in the form of the
inner product

,

 

(7)

 

defined in the usual way as

 

(8)

 

Here, the star denotes the complex conjugate and the
functions 

 

u

 

 and 

 

v

 

 can be taken in the general form

(9)

 

(10)

 

where 

 

ψ

 

 = 

 

ψ

 

(

 

r

 

, 

 

t

 

) is an arbitrary complex function. At
this point, it is sufficient to consider real functions only.
However, the assumption of the complex functions
makes possible the further generalization discussed in
the following sections. We note that Eq. (7) has the
same physical and mathematical content as Eq. (6). Our
aim is to find conditions for the function 

 

ψ

 

 that will lead
to the most physically reasonable and mathematically
simple formulation of the theory.

A generally valid property of the inner product (8) is
the Schwarz inequality,

 

(11)

 

Due to Eq. (7), the Schwarz inequality yields, in our
case,
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where
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ρ Vd∫ x
0〈 〉 1.= =

x
n 1+

n 1+
------------ρ

x ∞–=

∞

yd z
x

n 1+

n 1+
------------∂ρ

∂x
------ Vd∫–d∫ x

n〈 〉 .=

x
n 1+ ∂ρ

∂x
------ Vd∫ n 1+( ) x

n〈 〉 , n– 0 1 2 …., , ,= =

u v,( ) n 1+( ) x
n〈 〉–=

u v,( ) u*v V .d∫=

u x
n 1+ ψ,=

v 1/ψ*( )∂ρ/∂x,=

u u,( ) v v,( ) u v,( ) 2
.≥

u u,( ) v v,( ) n 1+( )2
x

n〈 〉
2
, n≥ 0 1 2 …,, , ,=

u u,( ) x
2n 2+ ψ 2

V , nd∫ 0 1 2 …, , ,= =



436

OPTICS AND SPECTROSCOPY      Vol. 103      No. 3      2007

SKÁLA, KAPSA

(14)

Until now, ψ could be an arbitrary complex function
and the integrals (u, u) and (v, v) have, in general, no
direct relation to the mean values 〈xn〉, characterizing
the measurement of the coordinate x. Therefore, ine-
qualities (12) are for general ψ only a mathematical
result without any direct physical meaning.

However, since ψ can be an arbitrary function, we
can require that the integrals (u, u) in Eq. (13) do have
a physical meaning and the function ψ obeys the condi-
tions

(15)

If these conditions are fulfilled, the inequalities (12)
contain the moments 〈xn〉 used above for describing the
results of measurements. The inner product (v, v) will
be discussed below.

Conditions (15), together with the normalization
condition that can be applied to ψ

(16)

do not determine the relation between ρ and |ψ|2
uniquely. They do show, however, that the most simple,
physically reasonable relation between the probability
density ρ and probability amplitude ψ has the form of
the Born rule as follows:

(17)

or

(18)

where s1 = s1(r, t) is a real function and its physical
meaning will be discussed in Section 8. We note that the
probability amplitude ψ can be multiplied by an arbi-
trary phase factor exp(iα), where α is a real number. It
follows from the last two equations that the function ψ
can be called the probability amplitude.

Defining the function s2 = s2(r, t) by the equation

, (19)

the probability amplitude ψ = ψ(r, t) can be written also
in the “eikonal” form

(20)

where s1 and s2 are the real and imaginary parts of s

(21)

and the function s2 = –(1/2)lnρ gives the form of the
probability density ρ.

We have seen that the integration by parts applied to
the definition of the mean values (3) yields Eq. (6),

v v,( ) 1

ψ 2
--------- ∂ρ

∂x
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2

V .d∫=

u u,( ) x
2n 2+ ψ 2
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ρ Vd∫ ψ 2
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ρ ψ 2
=

ψ ρe
is1,=

ρ e
s2–

=

ψ e
is

,=

s s1 is2+=

which has interesting physical and mathematical
implications. Its general consequence in form of the
inequality (12) does not contain physically relevant
quantities unless we assume that the function ψ obeys
conditions (15). It is seen that this approach does not
lead to the basic concept of quantum mechanics—the
probability amplitude—uniquely. It shows, however,
that the simplest solution of the conditions (15) and the
normalization condition (16) has the form of the well-
known Born rule (17) ([30], see also [9, 14, 31]).

It is to be noted that our way of writing the probabil-
ity amplitude in Eq. (20) is very similar to the expres-
sion used by Bohm [7, 8] (see also Madelung [32]), i.e.,

(22)

To get the same formula as Bohm, we can set � = 1,
S = s1, and R = exp(–s2). For this reason, it is not sur-
prising that some parts of the following discussion are
similar to that performed by Bohm. The most important
differences between our approach and that of Bohm are
summarized in the Conclusions.

3. COMMUTATION RELATION

Now we return to the normalization condition

(23)

Performing the integration by parts similar to that in
Eq. (5) and assuming that x |ψ|2  0 for x  ±∞, we
get

(24)

Multiplying this equation by –i, we obtain the equation

(25)

In the usual approach, the momentum operator
 = –i�(∂/∂x) and the corresponding Hilbert space of

the wave functions are postulated. Then, the commuta-
tion relation [x, ] = i� h appears to be a rather trivial
mathematical identity. However, our approach is differ-
ent. We do not postulate the form of the momentum
operator here; instead, we show that Eq. (25), contain-
ing the operator –i(∂/∂x), appears in the probabilistic
description as a simple consequence of the integration
by parts applied to the normalization condition (4) and
the Born rule (17).

Equation (25) indicates the validity of a more gen-
eral operator equality,

(26)
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x i ∂/∂x( )–,[ ] i.=



OPTICS AND SPECTROSCOPY      Vol. 103      No. 3      2007

CONTRIBUTION TO UNDERSTANDING THE MATHEMATICAL STRUCTURE 437

Except for the factor � determining the choice of units,
this commutation relation agrees with the commutation
relation [x, ] = i� h between the coordinate x and the

momentum operator  = –i�(∂/∂x) known from quan-
tum mechanics (for the momentum, see also Section 9).

We note also that the second integral in Eq. (25)
does not depend on s1 and shows that this equation is
the relation for s2 = –(1/2)lnρ only. Therefore, the exist-
ence of the commutation relation (26) is related to the
existence of the probability distribution ρ. In classical
mechanics, where the probability distribution ρ disap-
pears, this commutation relation disappears, too. The
probability density ρ does not appear in the classical
dynamics, which depends only on the function S1 = �s1
playing the role of the classical action S (see Section 13).

It is seen that the usual quantization based on the
transition from the classical coordinates and momen-
tum to the coordinate and momentum operators obey-
ing the commutation relations [x, ] = i� corresponds
to assuming the probabilistic character of measure-
ments described by ρ. Thus, discussion in Sections 2
and 3 helps one to understand the postulates of quantum
mechanics and contributes to understanding the basic
ideas of quantum mechanics.

We note that similar commutation relations can be
expected to be valid in any probability theory formu-
lated analogously to that discussed above. In the limit
case, when the probabilistic distribution of the results
of measurements can be neglected (as, for example, in
classical mechanics), such commutation relations need
not be considered.

4. FIRST UNCERTAINTY RELATION

The uncertainty relation for the coordinate x and the
operator –i(∂/∂x) can be derived in a standard way from
the commutation relation (26) (see, e.g., [33, 34]).
Instead of the standard approach, we will use results
obtained above and calculate (v, v) in Eq. (14) for ρ =
|ψ|2 as follows:

(27)

Using this result in Eq. (12) for n = 0, we get the uncer-
tainty relation in the form

(28)

It follows from Eq. (27) that the last integral in Eq. (28)
depends only on the function s2, giving the form of the
probability distribution ρ, and does not depend on s1.
Thus, in contrast to the usual uncertainty relations in

p̂x
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2
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4
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quantum mechanics, uncertainty relation (28) does not
depend on s1.

Now we compare the last uncertainty relation with
the usual uncertainty relations. First we see that

(29)

Substituting the right-hand side of this inequality into
Eq. (12) for n = 0, we get an uncertainty relation that
looks more familiar than Eq. (28), i.e.,

(30)

It is seen from Eq. (29) that this more usual form of the
uncertainty relation depends both on s1 and s2, as well
as that the left-hand side of Eq. (30) is greater than or
equal to that of Eq. (28).

5. HEISENBERG UNCERTAINTY RELATION

The uncertainty relation (30) can be further general-
ized and even more general forms of the uncertainty
relations can be obtained. Using the integration by parts
and the condition x |ψ|2  0 for x  ±∞, Eq. (24)
can be rewritten as

(31)

where a and b are arbitrary real constants. This equa-
tion can be further written as

(32)

where
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and

(34)

Using the property (v, u) = (u, v)*, we get

(35)

Calculating the square of the last equation, we get suc-
cessively
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Using this equation and the Schwarz inequality (11),
we obtain the result
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which can be rewritten in form of the uncertainty rela-
tion

(38)

This general form of the uncertainty relation is valid for
any real numbers a and b.

An interesting question is to find the values of a and
b leading to the smallest value of the left-hand side of
the last uncertainty relation. The minimum of the left-
hand side of Eq. (38) is obtained for

(39)

and

(40)

Except for the factor �2, the resulting uncertainty rela-
tion

(41)

agrees with the well-known Heisenberg uncertainty
relation [33–35]

(42)

Therefore, the Heisenberg uncertainty relation corre-
sponds to the smallest value of the left-hand side of a
more general uncertainty relation (38), in which both
the functions s1 and s2 are taken into account.

6. THIRD UNCERTAINTY RELATION

Now we want to clarify the question of whether it is
possible to make the left-hand side of the uncertainty
relation (41) even smaller. First, we see that the second
integral in the last uncertainty relation is greater than or
equal to the integral appearing in Eq. (27)

(43)

Here, the equality is obtained only if the function s1
does not depend on x. In deriving the preceding rela-
tion, we used the result

(44)
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Further, we can repeat the procedure used in Sec-
tion 2 with u = (x – 〈x〉)ψ and obtain the uncertainty
relation

, (45)

which is a generalization of the uncertainty relation (28).
The left-hand side of this uncertainty relation is less
than or equal to that of Eq. (41) and the equality is
obtained for s1 independent of x. Therefore, the Heisen-
berg uncertainty relation (42) can be replaced by the
uncertainty relation

(46)

If the function s1 depends on x, the left-hand side of this
relation can have a smaller value than that in the
Heisenberg uncertainty relation (42).

Similar to the commutation relations, we note that
these uncertainty relations are a direct consequence of
the integration by parts applied to the definition of the
mean value (3) and the Born rule (17). It is also seen
that similar uncertainty relations can be obtained not
only in quantum mechanics, but in any probabilistic
theory of a similar form. If the probabilistic character of
measurements can be neglected (as for example in case
of classical mechanics), the uncertainty relations disap-
pear analogously to the commutation relations. Another
general discussion of the uncertainty relations can be
found, for example, in [36–38].

There are two important operators appearing in the
commutation and uncertainty relations discussed
above, i.e., the coordinate x and the operator –i(∂/∂x).
Except for �, the operator –i(∂/∂x) equals the momen-
tum operator  = –i�(∂/∂x) known from quantum
mechanics. The momentum operator will be discussed
in more detail in Section 9.

7. VECTOR POTENTIAL
It is worth noting that Eq. (31) also remains valid in

the case that the constant b is replaced by a real function
b = fx(r, t). This means that the operator –i(∂ψ/∂x) can
be replaced by the operator –i(∂ψ/∂x) – fx and the com-
mutation relation (26) and the uncertainty relation (38)
can be further generalized. Therefore, general structure
of the theory remains preserved for any real function fx.
It is the mathematical result only. In physics, the func-
tions fx, fy, and fz can, for example, correspond to the
components of the electromagnetic vector potential A =
(Ax, Ay, Az) multiplied by the charge q of the particle.
Except for �, it agrees with the rule –i�∇  –i�∇ –
qA for including the vector potential A into quantum
theory (for charge, see the end of Section 10).

x x〈 〉–( )2 ψ 2
V
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It is seen that possibility to include the vector
potential into the theory is another general conse-
quence of the definition (3), integration by parts, and
the Born rule (17).

8. PROBABILITY DENSITY CURRENT

To describe physical systems, we have to specify not
only the form of the probability distribution ρ = ρ(r, t)
determining the mean values 〈xn〉 at time t, but also the
motion of the measured system in space. Information
about the motion of the system in space can be
described by means of the function s1 in Eq. (18), which
could be an arbitrary real function until now. Here, we
can proceed similarly as in continuum mechanics,
where not only the density ρ of the continuum, but also
the corresponding density current j = ρv, where v is the
velocity of the continuum, are used to describe the state
of the system.

Since we use the probability density ρ here, the cor-
responding current will have meaning of the probability
density current. Analogously to continuum mechanics,
we can define the probability density current jk by the
equation

(47)

where the vector vk does not give the real velocity of the
particle and has only a probabilistic meaning. Further,
we can write the vector vk by means of the gradient of
the function s1

(48)

where m0 is the rest mass of the particle and � is a con-
stant that determines the units used in measurement
(see also [39]). The numerical value of � has to be
found experimentally.

Equation (48) can be viewed as a probabilistic gen-
eralization of the classical expression

where p is the classical momentum and S is the classi-
cal action. One can also be inspired by the eikonal the-
ory or take Eq. (48) as a purely mathematical trick lead-
ing to a simple mathematical expression between jk and
s1. The spatial derivative in Eq. (48) could also be
replaced by a different functional relation between jk
and s1. However, using the spatial derivative in Eq. (48)
has two important advantages in that it leads to the lin-
earity of the expression for jk in terms of ψ discussed
below and contains the spatial derivatives (∂/∂xk) that
already appeared in the commutation and uncertainty
relations discussed in the preceding sections. Thus, for-
mulation based on Eqs. (47) and (48) has important
mathematical and physical advantages and ψ carries
information on the motion of the measured system in
space. We also note that the number of the quantities ρ

jk ρv k, k 1 2 3,, ,= =

v k �/m0( ) ∂s1/∂xk( ),=

v p/m0 ∇S( )/m0,= =

and jk, k = 1, 2, 3 equals the number of the space–time
dimensions.

Using Eqs. (47), (48), we get successively

(49)

Now, we can use the complex probability amplitude
(18) and get

(50)

However, the probability density current is real. There-
fore, by calculating the real part of the last expression,
we obtain the final formula for jk as

(51)

This formula agrees with the expression for the proba-
bility density current known from quantum mechanics
[33, 34].

The manner of deriving Eq. (51) shows that the rela-
tion between the probability amplitude and probability
density in form of the Born rule (18) yields not only
physically meaningful quantities in the uncertainty
relations, but also leads to the simple expression for the
probability density current (51).

It is seen from Eq. (51) that to obtain nonzero jk, the
probability amplitude ψ must be complex. In agree-
ment with the rules known from quantum mechanics,
the probability amplitudes ψ and ψexp(iα), where α is
a real constant, yield the same probability density ρ and
probability density current jk.

It is to be noted that the expression for the probabil-
ity amplitude in the form

(52)

describes two different aspects of physical measure-
ments. The first aspect, represented by the function s2,
is related to the probability density ρ via the equation
s2 = –(1/2)lnρ. The second one, represented by s1, is
related to the probability density current j = ρ�∇s1/m0.
In other words, they are two different kinds of physical
information carried by two different functions s1 and s2.
In this sense, the probability amplitude ψ = exp(is1 – s2)
represents the state of the system as it is known from
quantum mechanics.
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9. FISHER INFORMATION, KINETIC ENERGY, 
AND MOMENTUM OPERATOR

We note that the integral (v, v) in Eq. (14), which
appears in the uncertainty relation (28)

(53)

is known as the Fisher information, which characterizes
the probability distribution ρ with respect to the vari-
able x [15, 24, 40–42]. The following inequalities can
be obtained from Eq. (12):

(54)

and

(55)

Therefore, the Fisher information Ix has simple physical
meaning. It determines the lower bounds to the quanti-
ties 〈x2n + 2〉, n = 0, 1, 2, …, characterizing the results of
measurements. The larger the value of Ix, the smaller
values of 〈x2n + 2〉, n = 0, 1, 2, … are that can be obtained
by measurement. In three dimensions, the correspond-
ing three-dimensional Fisher information can be writ-
ten as

(56)

However, these Fisher informations depend on s2
only and do not take into consideration the probability
current jk represented by s1. Therefore, the Fisher infor-
mations Ix and I can, in physics, be generalized as [15]

(57)

and

(58)

The last integral also appears in the expression for
kinetic energy known from quantum mechanics as fol-
lows:

(59)

Therefore, the kinetic energy T in quantum mechanics
is proportional to the generalized Fisher information I ',
in which both gradients ∇s1 (related to the probability

Ix v v,( ) 1
ρ
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2
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2
Vd∫ �

2
I '

8m0
---------.= =

density current j) and ∇s2 (related to the probability
density ρ) are taken into account.

In classical mechanics, the probability density
ρ(r, t) is narrow enough that it can be replaced by the
function δ(r – 〈r〉), where 〈r〉 = 〈r〉(t) is the classical tra-
jectory. Then, integration in Eq. (59) disappears and one
can assume that s2 has maximum at the classical trajec-
tory and ∇s2(〈r〉) = 0. In this case, the kinetic energy
depends only on the function S1(〈r〉, t) = �s1(〈r〉, t) play-
ing the role of the classical action S (see Section 13).

The uncertainty relation (38) can be for a = 〈x〉 and
b = 0 written in the form

, (60)

which is more general than Eq. (54). In classical
mechanics, the kinetic energy related to s1 and the
Fisher information I ' are very large and the mean
square displacement 〈(x – 〈x〉)2〉 is small enough that the
classical trajectories can be introduced.

At the end of this section, we will make a few
remarks on the momentum operator. In contrast to stan-
dard quantum mechanics, the Hermitian operator –i�∇
need not be postulated in our approach. Its appearance
in the commutation relations, uncertainty relations,
probability density current, and the generalized Fisher
information indicates its important role in the theory.
Further, relation (51) between the probability density
current j and the operator –i�∇ shows that this operator
can be used for describing the motion of the measured
system in space. It agrees with quantum mechanics
where the operator  = –i�∇ is postulated as the
momentum operator. The concrete physical meaning of
the operator , the momentum operator, can be clari-
fied in different ways. The best approach is probably
based on the transition to classical mechanics. Perform-

ing this transition, the quantity 

appearing in Eq. (59) becomes the kinetic energy in the
Hamilton–Jacobi equation (∇S)2/(2m0), where S is the
classical action (see Sections 12, 13). Taking into
account that p = ∇S is the classical momentum, the
operator  = –i�∇ can be denoted as the momentum
operator.

10. PROBABILITY DENSITY AND TIME

Time can be discussed analogously to the spatial
coordinates; however, there are some important differ-
ences that have to be respected.

Assuming that the initial conditions for ψ at time t =
t0 are given, the probability amplitude ψ(r, t), t > t0
gives the probabilistic description of measurements
made at later times. Therefore, time evolution has a uni-
directional character from given initial conditions to the
relative probability of the results of (yet unperformed)
measurements at later times. If such a measurement is

x x〈 〉–( )2〈 〉 1/Ix'≥

p̂

p̂

i�∇ψ–
2

V / 2m0( )d∫

p̂
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actually performed, this probabilistic description must
be replaced by a concrete result obtained from the per-
formed measurement. The basis of two different parts
of the evolution scheme used in quantum mechanics are
as follows:

(1) Evolution between the initial conditions at t = t0
and time t > t0 of the following measurement. This time
evolution is described by the equations of motion.

(2) The reduction or collapse of the wave function at
time t of the actually performed measurement.

In this paper, we are interested mainly in equations
of motion, i.e., in the first part of this evolution scheme.
A detailed microscopic description of the reduction of
the probability amplitude is not needed here and can be
found, for instance, in [27, 28] (see also [43]).

In the case of the spatial coordinates discussed in
Section 2, we investigated the bound states obeying the
normalization condition

(61)

valid at all times; i.e., we assumed an infinite lifetime
for the investigated system. We also assumed that the
mean values

(62)

are finite.
In the case of time, we would like to proceed simi-

larly as for the spatial coordinates. We would like to
introduce the mean values

(63)

where, in agreement with our understanding of the
arrow of time, time integration is carried out for t ≥ t0.
Then we want to derive the corresponding commuta-
tion and uncertainty relations for time and energy and
discuss the scalar potential, antiparticles, and equations
of motion (Sections 10–12).

However, taking the usual normalization condi-
tion (61), i.e., assuming an infinite lifetime, the mean
values 〈tn〉 tend to infinity and an approach similar to
that in case of the spatial coordinates cannot be used.

It is obvious that the validity of the normalization
condition (61) at all times is, from the physical point of
view, a rather limiting assumption since it means that
the investigated system cannot change its state (for
example, to go from the excited state to the ground
state). Most likely, the simplest solution of this problem
is to assume that the lifetime of the investigated system
is finite and replace the probability amplitude ψ by the
function

(64)

ψ r t,( ) 2
Vd∫ 1=

x
n〈 〉 x

n ψ r t,( ) 2
Vd∫=

t
n〈 〉 t

n ψ r t,( ) 2
V t,dd∫

t0

∞

∫=

χ r t,( ) ψ r t,( )η t( ).=

Here, η(t) is a real decaying function normalized by the
condition

, (65)

for which the integrals

(66)

have finite values and ψ(r, t) obey Eq. (61). As a con-
crete example of a function obeying these conditions,
we can take the exponential

, (67)

which is often used in quantum mechanics for describ-
ing a finite lifetime.

Then, repeating essentially the same procedure as
for the spatial coordinates, we can define the square of
the mean lifetime 〈t2〉, get the operator i(∂/∂t), obtain
the corresponding time commutation and uncertainty
relations, and introduce the scalar potential. After per-
forming all calculations in the space–time region, the
transition to standard quantum mechanics of particles
having infinite lifetimes can be made by assuming that
η(t) changes very slowly in time or τ  ∞. At the
same time, the normalization condition over the space–
time,

(68)

has to be replaced by the standard normalization condi-
tion (61).

Because of the analogy of this approach to that for
the spatial coordinates, we will present here only the
most important steps of this discussion. By analogy
with Eq. (52), we write χ in the form

(69)

Then, we define the time component of the probability
density current by the equation analogous to Eqs. (47),
(48) as

(70)

and obtain an expression similar to Eq. (51), i.e.,

(71)

We note that the sign in the definition of jt is opposite to
that in case of jk. It corresponds to different signs of the
time and spatial parts of the metric in the special rela-
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tivity. Equation (70) corresponds to the time compo-
nent of the probability density current

known from relativistic quantum mechanics [33, 34],
where x0 = ct.

Further, by analogy with Eq. (25), we get the equa-
tion

(72)

Similarly to the constant b in Eq. (31), we can introduce
also a real constant b' into this equation as follows:

(73)

In contrast to the spatial coordinate x, where we could
introduce an arbitrary shift a (see Eq. (31)), the time
integration in the last equations runs from time t = t0,
when the initial conditions were given, and cannot be
arbitrarily shifted. The corresponding time uncertainty
relation can be written in a form analogous to Eq. (38)
as follows:

(74)

The minimum of the left-hand side of Eq. (74) is
obtained for

(75)

We note that Eq. (74) is also valid if a real constant b' is
replaced by a real function f0(r, t).

For b' = 0, we obtain the uncertainty relation

(76)

between the mean square time

(77)

and the time Fisher information

(78)

where the symbol '' denotes integration over space–
time. It is seen from Eq. (76) that the time Fisher infor-
mation  gives the lower bound to the mean square
time.
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It''

To illustrate the meaning of the uncertainty rela-
tion (74), we consider the decaying probability ampli-
tude

(79)

where the spatial part of the probability amplitude ψ is
normalized by the usual condition

In this case, we obtain the following from Eqs. (74),
(75):

(80)

b' = ω, and

(81)

Therefore, inequality (74) yields the relation between
the mean square time 〈t2〉 = 2τ2 and the square of the
absolute value of the imaginary part of the complex fre-
quency ω – i/2τ and has the physical meaning of the
well-known time–energy uncertainty relation (see, e.g.,
[33, 34, 44]).

Now, we will discuss different roles of time and spa-
tial coordinates in quantum mechanics (see also [45]).
In quantum mechanics, it is assumed that the system is
prepared in the state given by the initial conditions for
the wave function ψ(r, t) in the whole space at time t =
t0. Then, equations of motion are used to calculate the
wave function at later times and to determine the rela-
tive probability of results of future measurements made
on the system. For this reason, the spatial coordinates
and time have different roles in quantum mechanics and
it is not surprising that the coordinate–momentum and
time–energy uncertainty relations have different char-
acters. The former relation gives one the relation
between the mean square deviations of the coordinate
and the momentum from their mean values and can be
used for the infinite, as well as the finite, lifetime. The
latter uncertainty relation is the relation between the
mean lifetime (no mean square deviation) and the
imaginary part of the energy (i.e., the width of the cor-
responding energy level) and can be used for system
having a finite lifetime only.

11. POTENTIALS AND ANTIPARTICLES

In agreement with our understanding of the arrow of
time from t = t0 to t > t0, we assume that the direct phys-
ical meanings only have the probability amplitudes cor-
responding to the non-negative values of the time com-
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ponent of the probability density current integrated
over the whole space as follows:

(82)

If this quantity is negative, its sign can be reversed by
the complex conjugation χ  χ*, changing the sign
of the phase s1 and the probability density currents jk
and jt . Performing this transformation, we get from
Eq. (73) for b' = f0(r, t),

(83)

upon which we see that it leads to the change of the sign
of the function f0.

Analogous discussion can be also done for the spa-
tial coordinates. As a result, the complex conjugation
χ  χ* or ψ  ψ* leads to the change of sign of the
functions f0 and fk, k = 1, 2, 3, which can be respected
by putting f0 = qU and fk = qAk, where U and Ak can, for
example, be the scalar and vector electromagnetic
potentials and q denotes the charge of the particle.
Therefore, the probability amplitudes ψ and ψ*
describe particles that differ by the sign of their charge
and general structure of our probabilistic description
and the unidirectional character of time contribute to
understanding the existence of particles and antiparti-
cles.

Except for �, these conclusions agree with the well-
known rules i�(∂/∂t)  i�(∂/∂t) – qU and –i�∇ 
–i�∇ – qA for including the electromagnetic potentials
into quantum theory. These potentials representing dif-
ferent physical scenarios do not appear among the vari-
ables of the probability amplitude and describe non-
quantized classical fields.

We have seen that to obtain results of Sections 2–11,
no equations of motion have been needed. Thus, this
part of the mathematical formalism of quantum
mechanics follows directly from the probabilistic
description of results of measurements. The Planck
constant gives the units used in measurements and
scales at which the probabilistic character of measure-
ments is important. It must be determined experimen-
tally.

12. EQUATIONS OF MOTION

First, we note that the physical content of the Fisher
information—the characterization of the smoothness of
the probability distribution—is similar to that of Shan-
non entropy. However, in contrast to the Shannon
entropy, the Fisher information depends on the local
properties of the probability distribution and can be
used for deriving equations of motion [15].

To find equations of motion, we will require relativ-
istic invariance of the theory. In this respect, our

jt Vd∫ �
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⎛ ⎞– V t = i,dd∫
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∞

∫

approach is different from that based on the principle of
extreme physical information [15] or a minimum of the
Fisher information [39]. Except for the end of this sec-
tion, we will discuss free particles with no external
fields.

To find relativistically invariant formulation, we use
four time and spatial Fisher informations as follows:

(84)

(85)

giving the lower bounds to 〈t2〉, 〈(x – 〈x〉)2〉, 〈(y – 〈y〉)2〉,
and 〈(z – 〈z〉)2〉 (see Eqs. (60) and (76)). In contrast to
the integration over all times used in [15, 39], time inte-
gration is performed here over the physically relevant
region from the initial conditions at t = t0 to infinity.

Due to the possibility of taking arbitrary physically
reasonable initial conditions for χ(r, t) at t = t0, the spa-
tial Fisher informations can have arbitrary values in the
region

(86)

In this sense, the spatial Fisher informations are inde-
pendent quantities. The time Fisher information is also
non-negative,  ≥ 0; however, its value is given not
only by the initial conditions for χ(r, t) at t = t0, but also
by the requirement of the relativistic invariance of the
combined Fisher informations discussed below. From
this point of view, the time Fisher information  is not
an independent quantity.

To create the relativistic invariant from the Fisher
informations, we will first take their linear combination
in general form

(87)

and assume that it has a value independent of the iner-
tial system in which the measurement is performed.
Here, c is the speed of light and we assume first that the
plus or minus sign can be taken in this equation.

We note that for a very flat distribution ρ and the
probability density current jk = 0, the spatial Fisher
informations approach zero and the time Fisher infor-
mation equals  = c2const (in physics, we usually say
that the free particle is in its rest frame). It follows from
here and the condition  ≥ 0 that the constant const
must be greater than or equal to zero

const ≥ 0. (88)
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Further, we note that going from the inertial coordi-
nate system in which jk = 0 to another one where jk ≠ 0
(the particle moves with respect to this system), the sum
of the spatial Fisher informations  +  +  (and the
kinetic energy of the particle) increases. Assuming first
the positive sign in front of the sum of the spatial Fisher
informations, we see that for  +  +  > const, the

time Fisher information  would become negative in

contradiction with its property  ≥ 0. Therefore, to
guarantee that the left-hand side of Eq. (87) equals
const ≥ 0 and  ≥ 0 for all values of  +  +  ≥ 0,
we have to take the time and spatial Fisher informations
with a different sign and assume

(89)

Thus, our analysis based on the properties of the Fisher
informations confirms that the signs of the metric used
in Eq. (89) and the special theory of relativity must be
different for time and the spatial coordinates. We note
that in contrast to the constant const, the Fisher infor-
mations , , , and  can have different values in
different inertial systems.

Rewriting Eq. (89) in the form

(90)

it can be compared with the well-known Einstein equa-
tion

(91)

We will consider a free particle described by the prob-
ability amplitude

(92)

Here, the first exponential represents the probability
amplitude describing a free particle with the same prob-
ability density to find the particle anywhere in time and
space, E and p are a real number and a real vector. To
obey the normalization condition (68), we multiplied
the first exponential by two additional ones correspond-
ing to a very long lifetime τ and a very small spatial
damping factor α guaranteeing that the integrals in
Eq. (90) are finite. Calculating all integrals in Eq. (90)
and putting τ  ∞ and α  0 at the end of the cal-
culation, we get

(93)
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It is seen that this equation agrees with Eq. (91) for

(94)

This discussion shows again that the operators i�(∂/∂t)
and –i�∇ in Eq. (90) can be denoted as the energy and
momentum operators, respectively.

In the rest of this section, we will derive the most
important equations of motion of quantum mechanics
in a similar way as in [15]. Using the normalization
condition (68), we rewrite Eq. (89) in the form

(95)

Equation of motion can be found from the condition
that J[χ] is extremal with respect to χ,

(96)

or

(97)

where δ denotes the variation of the corresponding
quantity.

Now, we perform integration by parts with respect
to time in the first term and with respect to the spatial
coordinates in the second one and assume that the vari-
ations of χ equal zero at the borders of the integration
region

(98)

(99)

Then we get the equation

, (100)

which has to be obeyed for arbitrary variations δχ and
δχ*. This yields the equation for the probability ampli-
tude χ in the form

(101)

and its complex conjugate. Using Eq. (64), the last
equation becomes
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For a particle with an infinite lifetime, we assume that
the time derivatives of the function η go to zero,
dη/dt  0 and d 2η/dt 2  0. Then, using the prob-
ability amplitude (64) and the constant const in form
(94) we obtain the usual Klein–Gordon equation for a
free particle

(103)

At the same time, the normalization condition (68) has
to be replaced by Eq. (61).

The nonrelativistic time Schrödinger equation for a
free particle

(104)

can be obtained from the Klein–Gordon equation (103)
by using the transformation

(105)

where ϕ is the probability amplitude appearing in the
Schrödinger equation. This transition is well known
and will not be discussed here (see, e.g., [33, 34]). For
different derivation of the Klein–Gordon equation and
time Schrödinger equation, see [39].

The Dirac equation can be derived by taking the
probability amplitude χ in Eq. (95) in form of a column
vector with four components

(106)

where the cross denotes the Hermitian conjugate.
Inserting the γµ matrices with the well-known proper-
ties [33] into this equation and using Eq. (94), we get
the integral

(107)

analogous to the integral J[χ]. Then, using properties of
the γµ matrices, performing the integration by parts and

∆ 1/c
2( ) ∂2

/∂t
2( )– m0

2
c

2
/�

2
–[ ]ψ 0.=

i�∂ϕ/∂t �
2
/2m0–( )∆ϕ=

ψ e
m0c

2
t /i�

ϕ,=

1

c
2

----∂χ+

∂t
---------∂χ

∂t
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∂xk

--------- ∂χ
∂xk

--------
k 1=

3

∑–
⎝
⎜
⎛

∫
t0

∞

∫

∫ –
const

4
------------χ+χ

⎠
⎟
⎞

dVdt 0,=

K χ[ ] = 
1

c
2

---- γ 0∂χ
∂t
------⎝ ⎠

⎛ ⎞
+

γ 0∂χ
∂t
------⎝ ⎠

⎛ ⎞ ∫∫
t0

∞

∫

– γ k ∂χ
∂xk

--------⎝ ⎠
⎛ ⎞ +

γ k ∂χ
∂xk

--------⎝ ⎠
⎛ ⎞ m0

2
c

2

�
2

-----------χ+χ–
k 1=

3

∑ dVdt 0=

using boundary conditions analogous to Eqs. (98) and
(99) we get (see also [15])

(108)

The operator in the first set parentheses is the hermitian
conjugate of that in the second set. Equation (108) can
be obeyed by assuming that the expression in the first
or second set of parentheses equals zero. After the sub-
stitution χ = ψη and assumption dη/dt  0, the latter
condition yields the Dirac equation in the form

(109)

We have seen that the requirement of the relativistic
invariance of the linear combination of the time and
spatial Fisher informations yields the basic equations of
motion of quantum mechanics. The scalar and vector
potentials U and A can be included into the equations
of motion by means of the usual rules

and

discussed above.

13. CLASSICAL MECHANICS

To derive the Hamilton–Jacobi equation of classical
mechanics, we proceed as follows. The probability
amplitude ϕ appearing in the Schrödinger equation can
be taken in a form analogous to Eq. (52),

(110)

where the phase of the probability amplitude is now
expressed in the units � and the probability amplitude is

normalized by means of the usual condition  = 1.

The time Schrödinger equation with the potential
energy qU equals

(111)

Multiplying this equation by ϕ* and integrating over
the whole space, we get, after simple integration by
parts,

(112)
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Substituting Eq. (110) into the last equation yields

(113)

Due to the normalization condition

the second integral in this equation equals zero and the
imaginary term disappears from this equation.

Now we assume that the probability density

(114)

has very small values everywhere except for in close
vicinity to the point 〈r〉 = 〈r〉(t), where it achieves its
maximum and the first derivatives of S2 at this point
equal zero

(115)

In such a case, the probability density can be replaced
by the δ-function

(116)

and the probabilistic character of the theory disappears.
Therefore, the function S2 describing the form of the
probability distribution ρ does not appear in classical
mechanics.

Then, straightforward use of Eqs. (113)–(116) leads
to the Hamilton–Jacobi equation for the function S1 in
the variable 〈r〉

(117)

In classical mechanics, the variable 〈r〉 is usually
replaced by the classical coordinate r and the function
S1 is called the action S

(118)

We note that Eq. (116) corresponds to the limit S2 �
� or �  0+ in Eq. (114). Therefore, the function S1
in Eq. (117) is in fact the first term of the expansion of
S1 into the power series in �

(119)

In this limit, the commutation and uncertainty relations
disappear from the theory.

We have seen that the Hamilton–Jacobi equation
follows from the probabilistic description of results of
measurements in the limit of the δ-like probability den-
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2m0
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∂S r t,( )
∂t
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2m0
--------------------------- qU r t,( )+ + 0.=

S1 S1 � 0= ….+=

sities ρ and the nonrelativistic approximation. As usual,
the vector potential A can be included into the theory
by means of the rule ∇S  ∇S – qA following from
the rule –i�∇  –i�∇ – qA discussed in Sections 7
and 11. The Hamilton–Jacobi equation can be also the
starting point for obtaining the Hamilton variational
principle of classical mechanics.

14. MANY-PARTICLE SYSTEMS

The starting point of discussion of the N particle
system is a definition analogous to Eq. (3) in that

(120)

where ρ is the many-particle probability density and rj
are the coordinates of the jth particle. Then, discussion
can be performed analogously to that given above and
the probability amplitude, uncertainty and commuta-
tion relations, momentum operators, and density cur-
rents for all particles can be introduced. The scalar and
vector potentials U(r1, …, rN, t) and A(r1, …, rN, t), and
antiparticles can also be discussed.

The Schrödinger equation for N free particles can be
found from the many-particle generalization of the rel-
ativistic invariant (95)

(121)

where χ(r1, …, rN, t) is the N particle probability ampli-
tude, and mj denotes the rest mass of the jth particle.
Using a similar approach to that in Section 12, we can
then obtain the Schrödinger equation for N free parti-
cles as

(122)

and the Hamilton–Jacobi equation as

(123)

It is seen that the probabilistic description of results
of measurement and its relativistic invariance yield also
the basic mathematical structure of the many-particle
quantum mechanics.

15. POSTULATES OF QUANTUM MECHANICS

In this section, we will show that the basic formula-
tion of the postulates of quantum mechanics can be
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obtained from the discussion given in the preceding
sections.

It follows from the above discussion that the proba-
bility density ρ(r, t) and the probability density current
jk(r, t) can, in a mathematically simple and straightfor-
ward way, be represented by the probability amplitude
ψ(r, t). Using the probability amplitude ψ(r, t), it is
possible to calculate the mean values of the operators
representing the coordinates xk and momentum pk, k =
1, 2, 3, and further physical quantities that can be
expressed in terms of the coordinates and momentum
(the kinetic energy, total energy, etc.). In this sense, the
probability amplitude ψ(r, t) represents the state of the
system. It agrees with the usual first postulate of quan-
tum mechanics formulated in the coordinate represen-
tation.

According to some interpretations of quantum
mechanics, the probability amplitude ψ only represents
the subjective knowledge of the observer. However,
since ψ carries the information on ρ and jk, it contains
the objective physical information on the system. A cer-
tain analogy with this situation can be found in statisti-
cal physics, where the statistical distribution functions
describe physical reality in a different probabilistic
sense. For this reason, we do not agree with such purely
subjective interpretations.

Mean values of the coordinates and momentum can
be calculated from the formulas (compare with
Eqs. (39) and (40))

(124)

and

(125)

Here, the coordinate and momentum operators equal
 = xk and  = –i�(∂/∂xk), where � depends on the

units used in measurement. To obtain the Hamilton

operator  =  +  appearing in the Schrödinger
equation, the operators  and  can be formally sub-
stituted for the classical quantities xk and pk in the clas-
sical Hamilton function

(126)

appearing in the Hamilton–Jacobi equation (118). It is
obvious that a similar rule also applies for other physi-
cal quantities depending on xk and pk. This rule agrees
with the second postulate of quantum mechanics.

For the sake of simplicity, the following discussion
will be made in one dimension only. In our original
x-representation, we assumed that we use an experi-

xk〈 〉 ψ* x̂kψ Vd∫=

pk〈 〉 ψ* p̂kψ V .d∫=

x̂k p̂k

Ĥ T̂ V̂
x̂k p̂k

H T V+
1

2m0
--------- ∂S

∂xk

--------⎝ ⎠
⎛ ⎞ 2

V+
k 1=

3

∑= =

=  
1

2m0
--------- pk( )2

V ,+
k 1=

3

∑

mental apparatus that can measure the coordinate and
the probability density of getting the coordinate x in
measurement equals ρ(x) = |ψ(x)|2 (see Eq. (3)). Let us
assume now that we perform measurement with
another experimental apparatus that measures the
momentum and the probability of getting the value p of
the momentum equals |ϕ(p)|2. We also assume that the
corresponding probability amplitudes ψ and ϕ are
related by the unitary transformation U, preserving the
norm of the probability distributions as follows:

(127)

Then, the mean value of the coordinate x equals

(128)

where the integration in the second integral is per-
formed over p. This means that the coordinate operator
in this momentum or p-representation is not diagonal,

 = U–1xU. Assuming that the system that will be mea-
sured, it is prepared in the state described by the prob-
ability amplitude ϕ, the probability of getting the value
x in the following measurement of the x coordinate
equals

(129)

where

(130)

This result agrees with the third postulate of quantum
mechanics, according to which the probability of get-
ting the x value during the measurement of the coordi-
nate on the system in the state described by the wave
function ϕ can be written as |〈x |ϕ〉|2.

We note that the values of the x coordinate appear-
ing in the definition of the mean value 〈x〉 or the values
of the momentum p in measurement of the momentum
are real quantities and the corresponding operators  or

 are diagonal in their own x- or p-representation.
After transition to another representation by means of
the unitary representation, these operators are not diag-
onal; however, they remain hermitian. This conclusion
also agrees with the rules of quantum mechanics.

After the measurement of the coordinate x is per-
formed, yielding one concrete value x ', the state of the
system can be described by the probability amplitude
δ(x – x ' ) (the eigenfunction of the operator  = x). This
probability amplitude replaces the original one describ-
ing the state of the system immediately before the mea-
surement and its time evolution until the time of the fol-
lowing measurement is given by the corresponding
equation of motion. This change of the probability
amplitude resulting from the performed measurement
is known as the reduction or collapse of the wave func-
tion.

ψ Uϕ.=

x〈 〉 ψ*xψ xd∫ ϕ* U
1–
xU( )ϕ p,d∫= =

x̂

x〈 〉 x ψ 2
x,d∫=

ψ 2
Uϕ 2

.=

x̂
p̂

x̂
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Requirement of the relativistic invariance of the
generalized space–time Fisher information yields the
usual fourth postulate of quantum mechanics postulat-
ing the equations of motion (see Section 12).

We have seen that the rules discussed above can be
obtained from the probabilistic description of measure-
ment of the coordinates and time and the relativistic
invariance of the theory. More general formulation of
the postulates of quantum mechanics can be obtained
by generalizing the above discussion to further physical
quantities.

16. CONCLUSIONS

In [13], Landé tried to at least partially illuminate
the old problem of Einstein of why the world is a quan-
tum world [46]. Landé started his discussion of the
quantum world with three postulates, including (a) the
symmetry of the probabilities of the transition from the
state α to the state β, Pαβ = Pβα; (b) correspondence
between the actual microscopic and the ordinary prob-
ability law; (c) the covariance of dynamics requiring
that only differences of physical quantities that are like
the energy appear in observable quantities. Replacing
the standard postulates by the postulates (a)–(c), he was
able to obtain the momentum operator and commuta-
tion relations. Using the coordinate and the momentum
operator, the Schrödinger equation can be obtained in
the usual way from the classical mechanics.

In this paper, we have made an attempt to avoid this
or any other set of similar postulates and clarify the
basic structure of quantum mechanics by using the
probabilistic description of measurements.

We started by assuming that the probabilistic results
of measurement of the space coordinate x are given by
the probability density ρ(r, t). Then, using integration
by parts and the Schwarz inequality, we derived rela-
tions (12) containing an arbitrary complex function

ψ(r, t). In general, the quantities  appearing

in these relations are different from the moments

,

characterizing results of measurements. Requiring that
relations (12) contain physically relevant moments 〈xn〉
and

we concluded that the most simple solution of these
requirements has the form of the Born rule ρ = |ψ|2 (see
Section 2). At this point, the physical meaning of the
phase s1 of the probability amplitude

is not yet obvious.

x
n ψ 2

Vd∫

x
n〈 〉 x

nρ Vd∫=

ψ 2
Vd∫ 1,=

ψ ψ is1( )exp s2–( ) is1( )expexp= =

In Section 3, we used the normalization condition

and the Born rule ρ = |ψ|2 and by applying the integration
by parts, we obtained the commutation relation (25).
This commutation relation only depends on s2 and need
not be considered if the theory does not have a probabi-
listic character, as, for example, in the case of classical
mechanics. A similar commutation relation should
appear in any probabilistic theory analogous to that
described in this paper.

Subsequently, in Section 4, we started with the
uncertainty relation (12) obtained in Section 2 and
derived a few related uncertainty relations including the
Heisenberg uncertainty relation in form (41) that does
not contain the Planck constant �. We found also the
uncertainty relation (46) that does not depend on s1 and its
left-hand side is less than or equal to that in relation (41).
Analogously to the commutation relations, the uncer-
tainty relations should appear in any probabilistic the-
ory analogous to that discussed in this paper. In the
limit case in which the probabilistic character of the
theory disappears, the commutation and uncertainty
relations can be neglected.

The commutation relation (25) remains valid if the
operator –i(∂/∂x) is replaced by the operator −i(∂/∂x) –
fx(r, t), where fx is an arbitrary real function. This
makes it possible to generalize the theory and include,
for example, the vector potential describing the interac-
tion with the electromagnetic field (Section 7).

The physical meaning of the phase s1 was discussed
in Section 8. To describe the motion of particles in
space, it is necessary to introduce not only the probabil-
ity distribution ρ, but also the corresponding probabil-
ity density current, which can be taken in the form j =
ρv. Here, the “velocity” can be written in the general
form v = �∇s1/m0, where s1 is the phase of the probabil-
ity amplitude, m0 is the rest mass of the particle, and �
is a constant that has to be determined experimentally.
Thus, the probability amplitude

carries information on the probability density current j
contained in s1 and on the probability distribution ρ
contained in s2 = –(1/2)lnρ. The operator –i(∂/∂x)
appearing in the expression (50) for the probability
density current is needed for describing the motion of
particles in space.

The Fisher information characterizing the smooth-
ness of the probability distribution ρ appears already in
Eq. (12). Its generalization, including not only s2, but
also s1, was discussed in Section 9. Except for a factor,
this generalization of the Fisher information agrees
with the kinetic energy known from quantum mechan-
ics and shows its importance in physics. The momen-
tum operator was discussed in Section 9 too.

ρ Vd∫ 1=

ψ i s1 is2+( )[ ]exp=
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To discuss time in Section 10, we assumed that the
investigated system has a finite lifetime and the proba-
bility density can be normalized by the condition

Then, using an approach similar to that for the coordi-
nate x, we introduced the time component of the prob-
ability density current jt and the operator i(∂/∂t) and
derived the time–energy uncertainty relation (74). Dif-
ferent roles of time and the spatial coordinates in quan-
tum mechanics were also discussed.

Analogously to the vector potential, we also dis-
cussed the scalar potential. The unidirectional character
of time makes it possible to also understand the exist-
ence of antiparticles (Section 11).

Equations of motion are derived from the requirement
that a linear combination of the space and time Fisher
informations is a relativistic invariant (Section 12). It
leads not only to the Klein–Gordon, Dirac, and
Schrödinger equations, but it helps also to understand
some assumptions made in special theory relativity.

The transition from quantum to classical mechanics
is well-known. Therefore, only a brief discussion of the
transition from the Schrödinger equation to the Hamil-
ton–Jacobi equation of classical mechanics was made
in Section 13.

Generalization to many-particle systems is straight-
forward and was made in Section 14.

The standard postulates of quantum mechanics and
their relation to our approach were discussed in Sec-
tion 15.

The discussion in the first part of this paper can be
applied not only to the spatial coordinates x, y, and z, but
also to some other physical quantities. However, it does
not apply for the equations of motion that are derived
from the requirement of the relativistic invariance of the
space–time Fisher information /c2 – (  +  + )
depending on x, y, z, and t.

As we mentioned in Section 2, our way of writing
the probability amplitude in Eq. (20) is very similar to
that used by Bohm [7, 8]. However, our main results
and their interpretation are different from those of
Bohm. Since there is no experimental evidence for a
precisely defined position of particles assumed in [7, 8],
we do not make such an assumption here. Also, we do
not introduce any additional quantum potential like
Bohm does, since such a potential would violate the
commutation relations that are general consequence of
the probabilistic description of measurements. In con-
trast to [7, 8], where the validity of the Schrödinger
equation is postulated, we require here the relativistic
invariance of the generalized space–time Fisher infor-
mation leading to the relativistic equations of motion.
We also note that no hidden variables are needed in our
approach. Therefore, our understanding of quantum

ρ r t,( ) V tdd∫
t0

∞

∫ 1.=

It'' Ix'' Iy'' Iz''

mechanics is close to the standard or Copenhagen inter-
pretation and differs substantially from that of Bohm.

We also note that formulating the theory in terms of
the probability amplitude ψ instead the original quanti-
ties—probability density ρ and the probability density
current j—has a very significant advantage, namely, the
equations of motion are linear in ψ. Thus, the approach
based on the probability amplitude leads to a mathe-
matically simple theory based on the linear vector
spaces in which the superposition principle for ψ is
valid. If other quantities like ρ and j or s1 and s2 were
used for representing the state of the system, this phys-
ically important property valid for ψ would be lost.

Another question is whether the relation between
the probability amplitude ψ and the probability density
ρ could be different from that given by the Born rule
(17) or (18). For example, we can replace Eq. (18) by
the equation

(131)

Then, we obtain the normalization condition

(132)

and the mean square coordinate

(133)

Analogous formulas can also be obtained for other
physical quantities by replacing the usual probability
amplitude ψ by ξ2. The resulting formulas that can be
obtained from equations in Sections 2–15 are more
complicated and the equations of motion are not linear
in ξ. Therefore, the simplest theory with the probability
amplitudes creating the linear vector spaces is obtained
only for the usual relation between the probability den-
sity and probability amplitude in form of the Born rule.

Unperformed experiments have no results. There-
fore, it follows from our discussion that quantum
mechanics does not speak explicitly of events in the
measured system, but only of the results of measure-
ments, implying the existence of external measuring
apparatuses that has been supposed above.

Of course, one can argue that some steps of our dis-
cussion were motivated by our knowledge of quantum
mechanics. For this reason, the most important steps
were discussed in detail and their relation to standard
quantum mechanics was clarified. The resulting way of
obtaining quantum mechanics is not unique. However,
our discussion shows that quantum mechanics is, in the
sense of Occam’s razor, apparently the most simple and
straightforward way of describing the probabilistic
nature of certain class of physical phenomena with
important physical and mathematical advantages. It
shows also that the main ideas of quantum mechanics
are understandable and physically and mathematically
transparent.

ξ ρ1/4
e

is1/2
.=

ξ 4
Vd∫ 1=

x
2〈 〉 x

2 ξ 4
V .d∫=
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Now we can return to Einstein’s question of why the
world is a quantum world. Taking into consideration
that the interaction of the measured system with the
measuring apparatus and the rest of the world cannot be
in general neglected, measuring apparatuses are not
described in detail, but on the macroscopic level only;
real physical detectors have limited resolution and effi-
ciency and the experimental control of the initial condi-
tions is limited and probabilistic description of results
of measurements seems to be unavoidable. As shown in
this paper, such a probabilistic description of results of
measurements then leads, together with the relativistic
invariance of the theory and requirement of its mathe-
matical and physical simplicity, to quantum mechanics.
A deterministic description of the world in the sense of
classical mechanics is possible only in special cases
when the probabilistic character of measurements can
be neglected.

Since the information theoretical approach used in
this and other papers (see, e.g., [15–18, 22–24, 39, 42,
47, 48]) makes it possible to obtain the most significant
parts of the mathematical formalism of quantum
mechanics from the probabilistic description of results
of measurements, we believe that this is a good starting
point to understanding this field. This approach shows
that the roots of quantum mechanics are deeply related
to the probability theory. It also helps to understand
quantum theory as correctly formulated probabilistic
theory that can describe certain class of physical phe-
nomena at different levels of accuracy from the sim-
plest models to very complex ones.
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