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Basic mathematical apparatus of quantum mechanics like the wave function, coordinate and
momentum operator, corresponding commutation relation, kinetic energy, uncertainty relations, con-
tinuity equation and equations of motion is discussed from the point of view of probability theory
and mathematical statistics. It is shown that the mathematical structure of quantum mechanics can
be understood as generalization of classical mechanics in which the statistical character of results
of measurement is taken into account and general properties of statistical theories are correctly

respected.
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1. INTRODUCTION

Quantum mechanics and its meaning have been discussed
in a large number of publications from many different
points of view (see e.g., books' 2). It shows that quantum
mechanics is, despite its numerous successful applications,
difficult to understand.

In this paper, we discuss quantum mechanics {rom
the point of view of probability theory and mathemati-
cal statistics that can, as we hope, contribute to its better
understanding.

Similar discussion can be found for example in
Refs. [3-6, 9-12].

2. STATISTICAL DESCRIPTION OF RESULTS
OF MEASUREMENT

In this section, we discuss probably the most important
difference between classical and quantum mechanics—
statistical description of results of measurement in quan-
tum mechanics.

For the sake of simplicity, we consider only one spatial
coordinate x and time ¢.

We note that the measuring apparatus is not described
in quantum mechanics on the microscopic level and the
measured system interacts with the measuring apparatus.
Therefore, in agreement with experimental experience, we
assume that results of measurement of the coordinate x at
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time ¢ can be described by the probability density p(x, r)
obeying the normalization condition

/pdx=1 (1)

where the integration is performed from minus infinity to
plus infinity. We assume also that p has the property

lim x"p =0,

x~>+o0

n=0,1,2 (2)

Therefore, we limit ourselves to discussion of the so-
called bound states obeying conditions (2).

Further we suppose that the mean value of the coordi-
nate x resulting from repeated measurement is given by
the integral

(x) = [rpds (3)

In the limit
plx, 1) = 8(x—x,) 4)

corresponding to transition to classical mechanics with the
classical trajectory x, = x,,(¢) the mean coordinate {(x)
equals x,,.

Due to normalization condition (1) that is assumed to be
valid at all times we suppose also validity of the continuity
equation which has in one dimension the form

d aj
S ) (5)
ar  dx

where j(x, t) is the probability density current.
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3. WAVE FUNCTION

The wave function ¢ can be introduced in the following

simple way. o
First, we introduce a real function s, = s,(x, #) by the

equation

p=c ©)
or equivalently 5
=77 lnp (7)

The constant A > O could be an arbitrary real constant
depending on the choice of units. However, to get formulas
that agree with quantum mechanics, we will assume that
k= h/(2m) denotes the reduced Planck constant. We note
also that the transition p(x, t) = 8(x—x,;) can be formally
performed for i — 0.

In classical continuum mechanics in three dimensions,
the current j(r, ¢) can be written as j = p v, where v is the
velocity. By analogy with this approach, we can write the
probability density current j in one dimension in the form

j=puv (®)

In classical mechanics, the velocity is given by the for-
mula v = p/m, where p = dS/dx is the momentum, m is
the mass of the particle and S is the Hamilton principal
action.

Since we are not in the limit case of classical mechanics,
we replace the function S by a new real function s, =
s;(x, 1) and get (see also Ref. [12])

D ds,/dx

j=p—=p )
m m
Now, we can introduce the complex function
= elisi=s2)/h (10)

Using this function, the probability density and proba-
bility density current in one dimension can be written in
the form known from quantum mechanics

p=yf (11)
and 5 ” au
J=§“n“1;(¢'*5;—¢fax> (12)

where the star denotes the complex conjugate.

The complex function ¢ called the wave function in
Quantum mechanics is in this approach only a different
way of representing the state of the particle described by
two real functions p and j (or, equivalently, s, and s,).

We note that our expression for the wave function (10)
is similar to that of Bohm.”-8 However, we do not assume
the existence of hidden variables here and use the approach
that is extension of standard mathematical statistics.
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4. MOMENTUM OPERATOR

By analogy with Eq. (3), the mean momentum can be writ-
ten in the form

ds,
(p)= [ 2 pdx (13)
It follows from Eq. (2) that the integral

ds, hopod
22 hdx = __/ ~25:/h
dx pax 2 axe dx

h rdp h
= —— —dx = —— p|® =
P ZPI 0 (14)

A==

equals zero. Using this result it is easy to verify that
Eq. (13) can be also written as

(B)= [y pyx (15)
where the momentum operator equals
A a0
p=—ih— (16)
dx

We see that in case of the mean momentum Egs. (13)
and (15) yield the same result. However, it may not be true
in more complicated cases as it will be seen in Section 7.

5. MEAN VALUE OF XP

In this section, we investigate the mean value of the prod-
uct of the coordinate and momentum which is important
in the uncertainty relations.

As it is known, the mean value of the product of the
coordinate and momentum is in quantum mechanics given
by the expression

3ol (o) {nd)

Using Eq. (10) we get

(xp) +(px)
2

. d ,
_! / elmm=sB o[ —ih— ) —ifi e 2/ dx (18)
2 dx

Now we calculate the integral

/e(ﬂisl—.\'z)/ﬁx _l-hj_ elin=s)/h
dx

’).' (9“1 oo/
= /xie'z‘“/hdx-l-i/x—sic_““hdx (19)
dx dx

By using integration by parts in the last integral and
Egs. (1) and (2) we obtain

' — h , I3
/xﬁge“z"?/hdx = x——fze‘l\j/h I b~ /C_"‘z/hdx = —
dx 2 2 2
(20)
999
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The resulting formula

(xp) +(px) 8, _m as,
AL UGl 25 = [ x—pd 21
5 /,\ 8x dx = fx o pdx  (21)

agrees with the expresion

(xp) = f A%—pdx (22)
analogous to Egs. (3) and (13).

Summarizing results of the last two sections we see that
contribution of the function ds,/dx to the mean values
(py and ({xp)+ (px))/2 equals zero and the momentum
operator can be in these cases represented either by the
function p = ds,/dx or by the operator p = —ih(d/dx).

6. FISHER INFORMATION

The Fisher information is a very important quan-
tity appearing in mathematical statistics (see e.g.,
Refs. [13,14]). In our case, it can be introduced in the
following simple way (see also Refs. [3-5, 9-12]).

We start with normalization condition (1) for the prob-
ability density p in which we perform integration by parts
and use Eq. (14)

[(x—cz)p —-/ xX—a) fBd,\f-—l (23)
where a is an arbitrary real number. Taking into account
Eq. (2) we get the starting point of the following
discussion

dp
f(x a)—;d,\—-—l (24)

Now we make use of the Schwarz inequality for the
inner product (u,v) = [u*vdx of two complex functions
wand v

(u, u) (v, v) 2 |(u, v)[? 25)

Putting s
u=(x—a)/p, Uzjﬁ:?f (26)

and using inequality (25) we get

f(x—ct)zpdx f%(%)-dle 27)

where the second integral is called the Fisher information

1 /dp :
1,\._/;(5) dx>0 (28)

Inequality (27) is usually written in the form'?

/(x-—a)zpdx > (29)

This result is very general and does not depend on the
concrete meaning of the variable x. Interpretation of the
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last inequality is similar to that of the uncertainty rela-
tions in quantum mechanics since for given 7, the i integral
f(x—a)*pdx cannot be smaller than 1/1, and vice versa,
The minimum of the integral [(x—a)?pdux is obtained for
a={(x).

We note that inequality (29) in a more general form
is known in mathematical statistics as the Rao-Cramér
inequality."*'7 Hence, any correctly formulated statistical
theory has to lead to inequality (29) or an analogous one.

Using Eq. (6) for the probability density the Fisher
information can be written in the equivalent form

4 35\ ..
L=g [(52) e 30

which will appear in the following discussion.

7. KINETIC ENERGY

Now we discuss the kinetic energy T in quantum mechan-
ics and its relation to the Fisher information

A 2
Tzfl(p fo:)l/fl d 31)

where ¢ denotes the charge of the particle, m is its mass
and A is the vector potential in one dimension.

Using Eq. (10) for the wave function and Eq. (16) for
the momentum operator we get

as, as s
(p—qA) = (ax +t—a~3—qA)e(“‘ 2 (32)

and

. ,_[(? P9\
l(p—c/A)tJfI":[(%—qA) +(5—}> :|e““2/h (33)

Therefore, kinetic energy (31)

2 2
= On /05 ah) +0/0) o2 ()
2m
can be written as a sum of two terms
T=T+T, (35)
where ,
ds, /dx —
T1 =/ ( ‘Sl/ X C]A) e—2sz/ﬁdx (36)
2m
and ,
’ _/‘ d?z/dX) ’)_vz/hdx — M (37)
2m 8m

We see that the second part of the kinetic energy T
depending on ds,/dx is proportional to the Fisher infor-
mation / . It is worth noting that if the momentum would
not be represented by the operator p = —ik(d/dx) but by
the function p = ds, /dx, the term T, were not be obtained.
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5. HEISENBERG UNCERTAINTY RELATIONS

For the sake of simplicity, we assume that the potential A

equals zero.
The Heisenberg uncertainty relation'® for the coordinate

¢ and momentum p has the form

(AxP)(Bp)) 2 63)

where

(M) = [ (2= () |yPdx (39)
and ,
(wp = l (it - <ﬁ>)¢"dx (@0)
Using Egs. (10) and (14) we get

(AP = ((Ap)) +((Ap,)?) (41)

where

(wpyt = [ (f?—x : {%;))e/d “2)

@)= (%) erar=r

We see that, analogously to the kinetic energy 7T, the
mean square deviation of the momentum ((Ap)?) can be
split into two parts.

The first part {(Ap,)?*) corresponds to the representation
of the momentum by the function p = ds,/dx and the part
of the kinetic energy T;.

The second part {(Ap,)?) is proportional to the Fisher
information I, and corresponds to 7,. We note that for
((Ap))*) =0, the Heisenberg uncertainty relation (38) has
the form of inequality (29) for the Fisher information

and

with a = (x) (see also Refs. [5, 19)]. From this point of

view, general structure of statistical theories is in quantum
mechanics correctly respected.

9. TWO NEW UNCERTAINTY RELATIONS

We show in this section that the Heisenberg uncertainty
relation can be replaced by two uncertainty relations for
((Ap,)*) and {(Ap,)?) (see also Refs. [20, 21]).
According to the well-known result of mathematical
statistics, the product of variances of two quantities is
greater than or equal to the square of their covariance.'” In
the following cases, it is equivalent to the Schwarz inequal-
ity (25) with a suitable choice of the functions u and v.
First, we put

u=Axrp (44)

(s o
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Then, the Schwarz inequality yields the first uncertainty

relation
ds ds, 2
Ax 1 —~25/h
U (ax <ax>)e dx]

(46)
As it follows from Section 5, the function ds;/dx in the
last integral represents the momentum and this relation has
the usual above mentioned meaning known from mathe-
matical statistics. Depending on the functions s, and s,, the
square of the covariance of the coordinate and momentum
at the right-hand side of this relation can have arbitrary
values greater than or equal to zero.
The second uncertainty relation can be obtained in an
analogous way for

((Ax) ((Apl

u=Ax./p (47)
and ; ;
85 s
e
with the result
(A0 () = | st (52 —<%>)e‘2‘2/”dxl
@)

It follows from Eq. (14) that the right-hand side of this
relation can be simplified

2

as, -
(@oP@p) = ([x52erar)  s0)
Then, Eq. (20) leads to the final form of the second uncer-
tainty relation

(807 (0p) 2 o 1)

This uncertainty relation follows from the Schwarz
inequality in a similar way as the first one, however,
the covariance (u,v) is in this case constant and equals
h/2 > 0 independently of the concrete form of the func-
tions s, or p. We note also that relation (51) is for (x) =«
equivalent to inequality (29) for the Fisher information. It
confirms again that general structure of statistical theories
is in quantum mechanics correctly respected.

Analogous uncertainty relations can be derived also in
the multidimensional case?*?' and for the mixed states
described by the density matrix.?!

The sum of uncertainty relations (46) and (51) gives the
relation

N ) s [3s\\ g : ii_z
(A (Ap)) = [/M(a —<5;>)e d.x] =
(52)
The Heisenberg uncertainty relation (38) can be obtained
from this relation by neglecting the first term on its right-
hand side. Therefore, uncertainty relations (46) and (51)
are stronger than the corresponding Heisenberg uncertainty
relation (38).
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10. ROBERTSON~-SCHRODINGER
UNCERTAINTY RELATION

Relationship of uncertainty relations (46) and (51) to
the Robertson-Schrédinger uncertainty relation® can be
clarified as follows. . )

For the linear hermitian operators A and B, the
Robertson-Schrédinger uncertainty relation can be written
in the form

(A (B > -

7((AAABY +[([A. BD[) (53)

(t//[ﬁgb) is the mean value of the operator

e described by the wave function ¢, AA =
I§} AB+BA denotes the anticommutator
AB — BA the commutator of the operators

where (A)
A in the st
—(A), {
and (A, B]
A and B.
For the operators X = x and p = —i(hd/dx) the straight-
forward calculation yields

it >’°’ [

(8%, 4p)
= % [etziam [Ax (—m% - (,3))

d o
+(—ih—- - (ﬁ))Ax} elin=sl/hd
dx
as s
- / Ax<—a‘;—' —<—a%>)e"2‘3/hdx (54)

Further, taking into account the commutation relation
[x, p] = ik, relation (53) leads to Eq. (52). Therefore, rela-
tions (46) and (51) are stronger than the Heisenberg and
Robertson—Schrédinger relations (38) and (52) and yield
more detailed information in terms of the mean square
deviations ((Ax)?), ((Ap,)*) and {(Ap,)?).

For the momentum represented by the function p =
ds,/dx, the mean value ([Ax, Ap]) equals zero and the
Heisenberg and Robertson—Schrodinger uncertainty rela-
tions (38) and (52) do not contain the term A%/4. It shows
again that this representation of the momentum is not
except for cases discussed in Sections 4 and 5 correct.

11. GAUSSIAN WAVE PACKET

In this section, we discuss uncertainty relations (38), (46),
(51) and (52) in case of the gaussian wave packet.

We assume that the wave function of a free particle is
at time ¢ = 0 described by the gaussian wave packet

1

l/f():, 0) — aﬁe—.\'z/(lﬂz)+ik.\ (55)
with the energy
hl th?_
E =
dma* = 2m (56)
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where a > 0 a k are real constants. By solving the time
Schrédinger equation we get

1 V1 —ikt/ma?

P(x, 1) = Jadz JIE Gijma)
(x = (hik/m)1)*
% e"p[“zazu ¥ (bt /ma?)?]
+l_|:kx + (htx*/2ma*) — (hk2/2m)t] }
I+ (ht/ma?)?

(57)

The corresponding functions s, and s, and their deriva-
tives equal

£+ ((htx?)/(2ma*k)) — (hk/2m)t

Sl(X, l) = hk T (h[/maz)z

— R arctan

Rt
3 (58)

ma-

(x = (hk/m)1)?
sy(x, 1) = 2{a2[1+(ht/ma2)2]

1
! a/mw\/ 1+ (ht/ma?)? } 59)

sy . 1+ ((htx)/(ma*k))
dx 1+ (Rt/ma?)?
ds,  h(x—(hk/m)t)
ax a1+ (ht/ma2)?]
As it could be anticipated, the mean momentum and the
mean coordinate equal

and

(60)

(61)

N as,
(P) = <_8;> = hk (62)

and bk
(x) = —t (63)
m

The mean square deviations of the coordinate and
momentum are given by the equations

" a2 Rt \’
((Ax)?)y = ‘2‘[1 + (5&?) } o
and R4
2 [_
((Ap))7) = 2m2a®[1 4 (ht/ma?)?] )
(Ap)?) = s 0

2a*[1 + (Bt /ma?)?]
The left-hand side of relation (46) equals

h‘”

() )((ap))’) = (67)

J. Comput. Theor. Nanosci. 8, 998-1005, 2011

o

-

o



an

P

2o

o

Kapsa and Skdla

Calculating the right-hand side, we get the same result

(8 [9 PR
o dx dx T dm2a? (68)

Therefore, uncertainty relation (46) is fulfilled with the
equality sign.

Calculating the left-hand side of uncertainty rela-
tion (51) we obtain

hz
(8)(@p2)Y = (69)

and see that uncertainty relation (51) is fulfilled with the
equality sign, too.

The corresponding Robertson—Schrodinger uncertainty
relation has the form

) g R R
(BOX@P =gzt (10)
and is fulfilled with the equality sign for all r > 0. The
Heisenberg uncertainty relation (38) for our wave packet
can be obtained if the first term on the right-hand side of
the last equation is neglected.

The equality sign in Schwarz inequality (25) is obtained
if the functions u and v are collinear, i.e., for u = const v,
where const is a complex number. However, since the
functions s,, s, and p are real, the corresponding functions
u and v are also real. Therefore, const must be a real
number or a real function of ¢. It follows from the con-
ditions u = constv for the functions s, and s, that these
functions have to be quadratic functions of x of the form
p(t)x*+ q(t)x + r(t), where real coefficients p(z), ¢(t)
and r(¢) can depend on time. Both functions s, and s,
given by Eqs. (58) and (59) fulfill this condition.

It is worth to notice that the condition for the equality
sign in relation (51) is independent of the form of the
function s,. Therefore, the equality sign in this relation can
be achieved for much larger class of the wave functions
than in case of the Heisenberg or Robertson-Schrodinger
uncertainty relations. It is interesting not only from the
theoretical point of view but also from the point of view
of some applications.

12. VECTOR POTENTIAL

To introduce potentials, we make use of Eq. (24)

/(x—a)g—idxz—l (71)

Using Eqgs. (11) and (24) we get
P d
Ju—a(Lpspta=-t 0
dx dx
Multiplying this equation by —ik and taking into
account that p is the hermitian operator we can write this
equation in the form

[Wle—a p=flyde=in (73)

J. Comput. Theor. Nanosci. 8, 998-1005, 2011
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where f = f(x, r) denotes a real function.

This result indicates that the momentum operator p can
be replaced by a more general operator p — f, where the
function f can describe external conditions in which the
system in question moves. It is in agreement with the fact
that the commutation relation [x, p] = ifi can be replaced
by a more general relation [x, p— f] = ih. For the electro-
magnetic field, the function f corresponds to the expres-
sion ¢A in the kinetic energy (31) (see also Refs. [3-5]).

13. TIME

Systems investigated in standard quantum mechanics have
infinite life time and normalization condition (1) is valid
at all times ¢ from the preparation of the system in a given
state ¢ at time f =0 to the subsequent measurement at
later time. Therefore, the probability to find the measured
system anywhere in space equals one for all times >0
and it does not make sense to introduce the probability
density in time analogous to the probability density in
space with the properties (1) and (2). For this reason, time
is taken as a parameter in quantum mechanics.

Rather different situation is obtained if we assume that
the investigated system has a finite life time (like free neu-
trons and some other particles) and the integral f p(x,t)dx
decays in time (see also Refs. [3-5]). In such a case, we
can assume that the normalization of p = || can be per-
formed not only over space but also over time

[:0 [1ie Pdxar =1 (74)

This condition expresses the fact that the particle existed
at + =0 and some time later.

We note that this generalization includes standard quan-
tum mechanics as a limit case.

By analogy with the coordinate x, it is possible to define
the mean life time

r= ()= fl:)tfldf(x, H)Pdxds (75)

the mean square deviation

(=) = [ (1= (O [ 0Pdxds (76)
1==(0
and derive the corresponding time-energy uncertainty

relation.”

14. SCALAR POTENTIAL

Similarly to Eg. (23), we perform integration by parts with
respect to time in Eq. (74) and get

I:i/pdx]’C —/;)r(%l:/pdx]dt =1 (77)

t=0
1003
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Assuming analogously to Eq. (2)
lim t"fp(x,t)dx:O, n=012 (78)
1

and using Eq. (10) we obtain from Eq. (77) the result

LA Grovrigufu=mt o

Multiplying this equation by —ih and taking into
account that iA(d/dr) is the hermitian operator we get

f_(]f[(lﬁ ) (r) ~ (n//)*<zh w)]dxdt:ih (80)

f /1// I:ih—a———g, r]t//dxdz=iﬁ (81)
1=() ﬁt

where g = g(x, ¢) is a real function.

This results indicates that for systems with a finite life
time one can define the operator i%(3/dt) that has simi-
lar mathematical properties as the momentum operator p.
It is seen that the operator ifi(d/dr) can be replaced by
a more general operator i%i(d/dt) — g, where the function
g has analogous properties as the function f. It is also
in agreement with the fact that the commutation relation
[iR(d/dr), t] =ik can be replaced by a more general rela-
tion [ih(d/dt) — g, t] = ik. The function g corresponds to
the expression ¢V known from quantum mechanics, where
¢ is the charge of the particle and V is the scalar potential
(see also Refs. [3-5]).

15. EQUATIONS OF MOTION

In physics, we have to take into account not only the
probability density j given by the function s, but also
the probability density current depending on the functions
s, and s,. For this reason, we introduce generalized spa-
tial and time Fisher informations I’ and 1, analogous to
Eq. (30) (see also Refs. [3-5])

LI (e

© oy

= f,=o / | dadrz 0 (82)
and
as ds,\*
"= I 95 253 /h

h’fof[( ) (ar> ] et
—/Nf(w—d dr>0 83
- =0 Jt ez (83)

depending on the derivatives of the functions s, and s,.
Since there are no potentials in the last two equations, they
correspond to a free particle.
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To find equations of motion, we need some additiona]
physical principle. To describe physical phenomena in 3
way independent of the choice of the concrete inertial 8ys-
tem, we require that the combined space-time Fisher infor-
mation equals a real constant K independent of the state
of the investigated system

"

l "

3 +I'=K (84)
where ¢ is the speed of light and the sign in front of the
spatial Fisher information I can be either 4 or —

First we notice that the initial conditions for the wave
function ¢ at £ =0 can be from the mathematical point
of view chosen arbitrarily and I/ can have arbitrary values
greater than or equal to zero. In contrast to it, the wave
function i at later times is given by the evolution consis-
tent with Eq. (84).

Further, to determine the sign in Eq. (84), we consider
a free particle which is in rest in the inertial system. It
follows from Eq. (34) that it is obtained for very small
values of [ds, /dx| and |ds,/dx|. In such a case, the Fisher
information 7 is close to zero and it follows from Eq. (84)
that

K=0 (85)

Then, we consider a particle having large kinetic energy

T and large Fisher information I > K. In such a case, it is

impossible to obey Eq. (84) with the plus sign. Therefore,

we can conclude that the sign in Eq. (84) must be negative
I3 " —_

T I'=K (86)

It is seen that this combination of the Fisher informa-
tions is Lorentz invariant.

Using Eq. (74) the last equation can be written in the
form

LGS

This functional must be independent of . Therefore, we

get
1 a8y W
[/o/( ar ot

R’K

2

ad

ax

- hzTK]W)dxd; =0 (87)

AoY* %
dx dx

where 8 denotes the variation. Now we perform integration
by parts with respect to 7 in the first term and with respect
to x in the second one and assume that variations ¢ and
8 equal zero at the borders of the integration region.
Then we get

0 52 ')2
/ /(w*( ,_l—(_~hK)¢,d\edt+u =0 (89)
t=0

dx? 2 9r?

J. Comput. Theor. Nanosci. 8, 998—1005, 2011
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This equation has to be obeyed for arbitrary values of
8 and 8¢*. It yields the equation of motion

92 1 @ hRK 0 9
PR i L (%0)
Introducing the rest mass m, by the equation

dmic?

K= F o1

and generalizing Eq. (90) to three dimensions we obtain
the well-known Klein-Gordon equation

2 2.2
(A__1__a__m0c )w:o (92)

c2drr  R?

We note that another derivation of the Klein-Gordon
equation based on the principle of minimum of Fisher
information was given in Ref. [12]. From the mathemat-
ical point of view, both approaches are similar. However,
use of the operator 4/d¢ in Eq. (83), different signs of the
time and space Fisher informations in Eq. (86) and the
variation in Eq. (88) is in our case motivated physically.

As it is known, the Schrodinger equation for a free
particle
de K2
it 2m,
can be obtained from the Klein-Gordon equation (92) as
the nonrelativistic approximation for the function ¢ given
by the equation

i (93)

lﬁ — emoczt/(iﬁ)qo (94)

The Dirac equation for a free particle can be also
obtained in a similar way (see also Refs. [3-5, 9-11]).

The potentials can be included into the theory by the
method described in Sections 12 and 14.

It worth to notice that the equations of motion discussed
above are linear and the superposition principle is for them
valid. This property can be traced back to the expres-
sion (28) for the Fisher informations /,. By using the sub-
stitution p = exp(—2s,/k), I, can be written in terms of
the square of the function ds,/dx (see Eq. (30)). Simi-
lar approach is used in Eqgs. (82) and (83) for I and I},
too. Then, using Eq. (86) and performing the variations
and integration by parts in Eq. (87), the squares disappear,
equations become linear and the second partial derivatives
with respect to the coordinates and time are obtained.

We note also that the role of the operator ii(d/dt) is dif-
ferent from the role of the energy operator—hamiltonian.
In agreement with discussion in this section, the opera-
tor ik(d/dt) is important for describing the time evolution
of the wave function in agreement with the equations of
motion.

Finally we note that quantization known from quan-
tum mechanics is consequence of the boundary conditions
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applied to the wave function ¢. As it is known, only some
solutions of the equations of motion obey these conditions
and possible states of quantum systems can be quantized.

16. CONCLUSION

Concluding, results of this paper show that the basic math-
ematical structure of quantum mechanics can be under-
stood as generalization of classical mechanics in which
the statistical character of results of measurement is taken
into account and the most important general properties of
statistical theories known from mathematical statistics are
correctly respected. It is not therefore surprising that quan-
tum mechanics has been successfully applied to a very
large spectrum of systems of microscopic and mesoscopic
character.
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