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A large part of the mathematical formalism of quantum mechanics including the probability density,

probability density current, uncertainty relations, wave function, momentum operator, kinetic energy,

commutation relations and potentials is related to the probabilistic character of quantum measure-

ments. Equations of motion of quantum mechanics can be obtained from the relativistic invariance of

the space–time Fisher information. Some properties of potentials and existence of antiparticles are

related to the CPT symmetry. Operators representing parallel or serial physical events in experimental

setups can be represented by the sum or product of the corresponding operators.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The aim of this article is to summarize and extend results of our
previous investigations [1–7] in which the approach to understanding
quantum mechanics can be described by the title of this paper. Due to
limited number of pages, the discussion in this paper is made as
simple as possible. Somewhat different approach to obtaining the
most important laws of physics can be found in Refs. [8,9].
2. Uncertainty relations

Uncertainty relations, one of the fundamental results of
quantum mechanics, have been studied in a large number of
papers (see e.g. Refs. [10–15,1–5]; for a detailed review, see
Ref. [16]). The standard approach to their derivation is based on
the wave function c. In this section, we will show that uncertainty
relations can be obtained directly from the probabilistic descrip-
tion of measurements.

To be more concrete, we discuss measurement of the
coordinate x. For the sake of simplicity, we consider the one-
dimensional space only.

Results of repeated measurements of the coordinate x can be
characterized by the mean values

/xS ¼
Z

xrðx; tÞdx; ð1Þ
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).
/x2S ¼
Z

x2rðx; tÞdx; ð2Þ

where the integration is carried out over the whole space,
rðx; tÞZ0 is a normalized probability density

Z
rdx ¼ 1 ð3Þ

and

lim
x-71

xnr ¼ 0; n ¼ 0;1;2: ð4Þ

Normalization condition (3) and Eq. (4) are assumed to be valid at
all times t.

First, we perform integration by parts with respect to the
variable x in Eq. (3) and get [3]

xrj1x¼�1 �
Z

x
@r
@x

dx ¼ 1: ð5Þ

Assuming that the first term in this equation equals zero (see
Eq. (4)) we obtain the equation

Z
x
@r
@x

dx ¼ �1: ð6Þ

This simple result has interesting consequences.
Putting

u ¼ x
ffiffiffiffi
r
p

ð7Þ

and

v ¼
1ffiffiffiffirp @r
@x

ð8Þ
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we get from the Schwarz inequality

ðu;uÞðv; vÞZjðu; vÞj2 ð9Þ

for ðu; vÞ ¼
R

u�v dx the ‘‘uncertainty’’ relation [1–5,17]

/x2SIZ1: ð10Þ

Here,

I ¼

Z
1

r
@r
@x

� �2

dx ð11Þ

is the so-called Fisher information known from mathematical
statistics [17,18].

The ‘‘uncertainty’’ relation (10) is independent of the concrete
meaning of the variable x. It means that similar relations exist not
only in physics but also in any probabilistic theory analogous to
that described above.
3. Complex wave function

For physical systems, we must give not only the probability
density rðx; tÞ but also some quantity describing the motion of a
particle in space.

By analogy with continuum mechanics, it is possible to
introduce the probability density current j related to the
‘‘velocity’’ v [3]

j ¼ rv: ð12Þ

The quantities r and v can be expressed in terms of two real
functions s1 ¼ s1ðx; tÞ and s2 ¼ s2ðx; tÞ as follows:

r ¼ e�2s2=‘ ; ð13Þ

v ¼
1

m

@s1

@x
: ð14Þ

Here, ‘ is the Planck constant and m is the mass of the particle.
The last equation has a form analogous to that between the
velocity v and momentum p in classical mechanics v ¼ p=m,
where p ¼ ð@S=@xÞ and S is the classical Hamilton action.

Then, introducing the complex wave function cðx; tÞ

c ¼ eðis1�s2Þ=‘ ; ð15Þ

we get two basic formulae of quantum mechanics for the
probability density

r ¼ jcj2 ð16Þ

and probability density current [3]

j ¼
‘

2mi
c�
@c
@x
�c

@c�

@x
Þ:

�
ð17Þ

We see that instead of r and j, the state of the system can be
described by the functions s1 and s2 or, equivalently, the complex
wave function c (see also Refs. [1–5]). From this point of view, the
complex wave function is a very useful mathematical representa-
tion which carries all necessary information and has further
mathematical advantages discussed below.

According to Eqs. (12)–(14), the probability density r and
probability density current j do not change if the function s1 is
replaced by s1 þ a, where a is a real constant. It agrees with
quantum mechanics where the wave functions c and cexpðiaÞ
give the same physical state.

By analogy with the classical momentum p ¼ mv we can
introduce also the momentum operator p̂ ¼ �i‘ ð@=@xÞ having
the property

p ¼ mv ¼
@s1

@x
¼

Rðc�p̂cÞ
r

ð18Þ

in agreement with the discussion given above. According to this
equation, the mean momentum can be calculated asZ

mvrdx ¼

Z
Rðc�p̂cÞdx: ð19Þ

Taking into consideration that the operator p̂ has a real eigenvalue
spectrum we get the well-known formula

/p̂S ¼
Z

c�p̂cdx: ð20Þ

It follows from Eqs. (4) an (13) that the mean value of the
momentum operator is real

/p̂S ¼
Z
@s1

@x
rdxþ i

Z
@s2

@x
rdx ¼

Z
@s1

@x
rdx: ð21Þ

For probability distributions that are close to zero everywhere
except for a very narrow region along the classical trajectory xcl ¼

xclðtÞ the probability density rðx; tÞ can be replaced by the function
dðx� xclÞ. Denoting the corresponding limit of the function s1 as
S ¼ SðxclÞ we get the formula known from classical mechanics
[19,7]

p ¼
@S

@x
: ð22Þ
4. Heisenberg uncertainty relation

To derive the standard Heisenberg uncertainty relation we
substitute Eqs. (15) and (16) into Eqs. (10) and (11). The resulting
uncertainty relation has the form [3–5]

/x2SIZ1; ð23Þ

where

I ¼
4

‘ 2

Z
@s2

@x

� �2

e�2s2=‘ dx: ð24Þ

Now we note that

IrI0; ð25Þ

where

I0 ¼
4

‘ 2

Z
@s1

@x

� �2

þ
@s2

@x

� �2
" #

e�2s2=‘ dx ¼ 4

Z
@c
@x

����
����
2

dx ¼
4

‘ 2

Z
p̂c
�� ��2dx

ð26Þ

is the generalized Fisher information [3].
Physical importance of I0 is given by the fact that it takes into

account not only the form of the probability distribution given
by r (or s2) but also an analogous distribution given by j (or s1

and s2). Except for a numerical factor, the kinetic energy in
quantum mechanics

T ¼

Z
jp̂cj2 dx=ð2mÞ ¼

‘ 2

8m
I0 ð27Þ

equals the generalized Fisher information I0.
Evident uncertainty relation for I0 following from Eqs. (23)

and (25):

/x2SI0Z1 ð28Þ
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can be written also in a more familiar form with the momentum
operator

/x2S
Z
jp̂cj2 dxZ

‘ 2

4
: ð29Þ

This relation has to be valid independently of the choice of the
origins a and b of the coordinate systems for measurement of the
coordinate and momentum (see also Ref. [3])

Z
ðx� aÞ2jcj2 dx

Z
jðp̂ � bÞcj2 dxZ

‘ 2

4
: ð30Þ

Calculating the minimum of the left-hand side of this relation
with respect to a and b we get the well-known Heisenberg
uncertainty relation [3]

Z
ðx�/xSÞ2jcj2 dx

Z
jðp̂ �/p̂SÞcj2 dxZ

‘ 2

4
: ð31Þ

In agreement with the above discussion, this uncertainty
relation can be replaced by two stronger ones [4,5]

/ðDxÞ2S/ðDp1Þ
2SZ ðx�/xSÞ

@s1

@x
�

@s1

@x

� �� �� �2

ð32Þ

and

/ðDxÞ2S/ðDp2Þ
2SZ‘ 2=4: ð33Þ

Here, the mean value of the function FðxÞ is defined as

/FðxÞS ¼
Z

FðxÞjcj2 dx ð34Þ

andZ
jðp̂ �/p̂SÞcj2 dx ¼ /ðDp1Þ

2Sþ/ðDp1Þ
2S; ð35Þ

/ðDp1Þ
2S ¼

@s1

@x

� �2
* +

�
@s1

@x

� �2

; ð36Þ

/ðDp2Þ
2S ¼

@s2

@x

� �2
* +

�
@s2

@x

� �2

¼
@s2

@x

� �2
* +

: ð37Þ

The first quantity /ðDp1Þ
2S depends on ð@s1=@xÞ and r and

can be different from zero for the nonzero probability density
current j only. The second quantity /ðDp2Þ

2S appearing in the
uncertainty relation (33) depends only on the envelop of the wave
packet given by s2 and is independent of j. Therefore, the
separation of

R
jðp̂ �/p̂SÞcj2 dx into two parts given above has

a good physical meaning. General discussion including the
multidimensional case and the mixed states can be found in
Refs. [4,5].
5. Commutation relation

Eqs. (6) and (16) yieldZ
x
@c�

@x
cþ c�

@c
@x
Þdx ¼ �1:

�
ð38Þ

By multiplying this equation by �i‘ we getZ
� �i‘

@c
@x

� ��
xcþc�x �i‘

@c
@x

� �� 	
dx ¼ i‘ : ð39Þ

Assuming that �i‘ ð@=@xÞ is the hermitian operator we obtain the
equationZ

c� x;�i‘
@

@x

� 	
cdx ¼ i‘ : ð40Þ
This result shows that the commutation relation between the
coordinate x and �i‘ ð@=@xÞ is closely related to Eqs. (6) and (16)
and can be obtained even without the prior knowledge of the
momentum operator p̂. It is to be noted that the calculation given
above is not a general proof of the commutation relation ½x; p̂� ¼
i‘ that has to be valid for the inner product with arbitrary two
quadratically integrable functions.
6. Equations of motion

To find equations of motion some additional principle must be
applied. In physics, it is natural to require the relativistic
invariance of equations of motion.

The first attempt to create a relativistically invariant general-
ization of the Fisher information I leads to the space–time
information (see also Ref. [3])

J ¼
1

t2 � t1

Z t2

t1

Z
1

r
1

c2

@r
@t

� �2

�
@r
@x

� �2
" #

dx dt ¼ const: ð41Þ

Here, we assume that the Fisher information J does not change
its value const. if the Lorentz transformation is performed. The
constant const. does not depend on the state of the measured
particle, i.e., it is independent of r. The initial conditions at t1 are
given by rðx; t1Þ. Since the initial conditions can be arbitrary
including the case when ð@r=@xÞ2 has very small values for all x, we
can conclude that const:Z0. The time integration is performed from
t1 when the initial conditions were given (first measurement or
preparation of the particle in the state described by rðx; t1Þ).
At times t 2 ðt1; t2Þ no measurement is performed. At t2, the
particle interacts with the measuring apparatus again (second
measurement).

The corresponding equation of motion can be found by
calculating the variation of Eq. (41) with respect to r and
assuming that the variation of r can be arbitrary. It can be seen
that the resulting equation for r is nonlinear and, therefore, it is
very difficult to solve. The second problem is that the information
J based on r only is the same for all the probability density
currents j. For this reason, we will make the second attempt and
use in analogy with Eq. (26) the relativistically invariant space–
time information based on c (see also Ref. [3])

J0 ¼
4

t2 � t1

Z t2

t1

Z
1

c2

@c
@t

����
����
2

�
@c
@x

����
����
2

Þdx dt ¼ const:

 
ð42Þ

This equation can be also written in the form

Z t2

t1

Z
1

c2

@c
@t

����
����
2

�
@c
@x

����
����
2

�
const:

4
jcj2Þdx dt ¼ 0:

 
ð43Þ

The variation of this equation yields

Z t2

t1

Z
1

c2

@dc�

@t

@c
@t
�
@dc�

@x

@c
@x
�

const:

4
dc�cþ c:c:

� �
dx dt ¼ 0: ð44Þ

Performing integration by parts with respect to t in the first
term and with respect to x in the second one and assuming that
the variations of c equal zero at the borders of the integration
region

dcðx; t1Þ ¼ dcðx; t2Þ ¼ 0; lim
x-71

dcðx; tÞ ¼ 0 ð45Þ

we get the equation

Z t2

t1

Z
dc�

@2

@x2
�

1

c2

@2

@t2
�

const:

4

� �
cdx dt þ c:c: ¼ 0 ð46Þ
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that has to be obeyed for arbitrary variations dc and dc�. It yields
the equation of motion

@2

@x2
�

1

c2

@2

@t2
�

const:

4

� �
c ¼ 0 ð47Þ

and its complex conjugate.
Putting const: ¼ 4m2c2=‘ 2 and using three spatial coordi-

nates we obtain from the last equation the Klein–Gordon
equation [20,21]

D�
1

c2

@2

@t2
�

m2c2

‘ 2

� �
c ¼ 0 ð48Þ

describing a free particle.
The corresponding non-relativistic time Schrödinger equation

i‘
@j
@t
¼ �

‘ 2

2m
Dj ð49Þ

follows from the Klein–Gordon equation (48) if the well-known
transformation [20,21]

c ¼ emc2t=ði‘ Þj ð50Þ

is applied.
Similar discussion can be made also for the Dirac equation [3].
7. Potentials and antiparticles

Eq. (38) remains valid even if the operator ð@=@xÞ is replaced by
the operator ð@=@xÞ þ if ðx; tÞ, where f ðx; tÞ is a real function. It
indicates that one can introduce additional functions or ‘‘poten-
tials’’ into the theory that can describe external conditions in
which the particle moves.

Similar replacement can be applied also to Eq. (43)

Z t2

t1

Z
1

c2

@c
@t
þ if tðx; tÞ

����
����
2

�
@c
@x
þ if xðx; tÞ

����
����
2

�
const:

4
jcj2

 !
dx dt

¼ 0;

ð51Þ

where ftðx; tÞ and fxðx; tÞ are real functions.
Requiring now the invariance of the corresponding Fisher

information J0 with respect to the transformations t-� t and
x-� x (the PT-invariance) we see that the functions ft and fx have
to obey the conditions

fxðx; tÞ ¼ �fxð�x;�tÞ; ftðx; tÞ ¼ �ftð�x;�tÞ: ð52Þ

Therefore, they must have the form

fxðx; tÞ ¼ qgxðx; tÞ; ftðx; tÞ ¼ qgtðx; tÞ; ð53Þ

where gxðx; tÞ and gtðx; tÞ are real functions that are even in the
both variables x and t, and q is a ‘‘charge’’ changing its sign during
the transformation t-� t and x-� x. As a result, the CPT-
invariance is obtained.

The well-known prescriptions p̂-p̂ � qAðr; tÞ and i‘ ð@=@tÞ-

i‘ ð@=@tÞ � qVðr; tÞ, where Aðr; tÞ and Vðr; tÞ are the vector and scalar
electromagnetic potentials and q is the charge of the particle agree
with the properties of the functions fx and ft given above.

Results of this discussion agree with the existence of particles
and antiparticles with the charge q and �q (see also Ref. [3]).
8. Operators

Now, we are interested in a mapping between events
in experimental setups and mathematical objects represen-
ting the events. Events in experimental setups and their
mathematical representation must obey the following conditions
[6]:
(i)
 Parallel events do not depend on their order

a3b ¼ b3a: ð54Þ
(ii)
 Serial events, except for special cases, do not commute

ababa: ð55Þ
(iii)
 Parallel and serial events obey the associative law

a3ðb3cÞ ¼ ða3bÞ3c; ð56Þ

aðbcÞ ¼ ðabÞc: ð57Þ
(iv)
 Finally, events obey the distributive laws

aðb3cÞ ¼ ðabÞ3ðacÞ; ð58Þ

ða3bÞc ¼ ðacÞ3ðbcÞ: ð59Þ
It has been shown in Ref. [6] that there exist always a
mathematical representation RðaÞ of the experimental events in
which two parallel events a and b are represented by the sum
RðaÞ þ RðbÞ and two serial events ab are represented by the
product RðbÞRðaÞ. Such representation exists independently of the
concrete physical character of events.

Properties of linear hermitian operators used in quantum
mechanics agree with these results.
9. Summary

We can conclude that the basic mathematical structure of
quantum mechanics can be obtained in a few steps:
(i)
 Probabilistic description of the results of measurement of the
coordinates by means of the probability density r. It leads to
the uncertainty relations.
(ii)
 Description of motion by means of the probability density
current j. Together with (i), it makes possible to introduce the
complex wave function c, momentum operator p̂, general-
ized space Fisher information (or kinetic energy) and
commutation relation between x and p̂.
(iii)
 Relativistic invariance of the space–time Fisher information.
It leads to the relativistic Klein–Gordon equation and Dirac
equation and to the non-relativistic Schrödinger equation.
(iv)
 The commutation relation between x and p̂ makes possible to
include external potentials. Their properties agree with the
CPT-theorem and the existence of particles and antiparticles.
(v)
 Events in experimental setups can be always represented by a
mathematical representation RðaÞ in which parallel events a

and b are represented by the sum RðaÞ þ RðbÞ and serial events
ab are represented by the product RðbÞRðaÞ. It agrees with the
properties of operators used in quantum mechanics.
We have seen that the complex wave function c is a
mathematically advantageous representation of the information
carried by the probability density r and probability density
current j. We note also that the relation r ¼ jcj2 between the
probability density and probability amplitude is the most simple
one leading to linear equations of motion. Another powers of jcj
or another functional relationship between r and jcj lead to more
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complex nonlinear equations of motion (see Ref. [3]). From this
point of view, the relation r ¼ jcj2 has unique mathematical
properties.

Finally we note that the discussion given in this paper can
easily be extended to three spatial dimensions.
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