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Abstract. Recently, a new method for calculating perturbation energies in one-

dimensional systems has been suggested. In this paper, we show that this method
can successfully be used also for two-dimensional systems. Combining this method
with a standart numerical technique a simple and straightforward method yielding
perturbation eigenvalues and eigenfunctions is obtained.

Introduction
In this paper, we are interested in the perturbation theory for the Schrédinger equation

Hi(z) = Ey(=). 1)

Despite of the well-known formulations which can be found in any textbook on quantum mechanics
[Schiff, 1955], there is one property of the perturbation equations which has been noticed only recently
(Skdla et al., 1996]. Till now, this method has been applied to one-dimensional systems only. The aim
of this paper is to show that this method can be used also for two-dimensional systems.

As usual in the perturbation theory, we assume the hamiltonian, wave function and energy in the
form

H = Hy + \Hy, (2)
% =to+ M1 + Nohp + - (3)

and
E=Ey+AE + NEy +- -, (4)

where ) is the perturbation parameter. Using these assumptions in the Schrédinger equation (1) we get
the well-known equations for E, and ¥,

Hovo = Eoto (5)
and g
Hotpn + Hitpn1 = Y _ Epp—ixn=1,2,.... (6)
=0

Let us assume that the wave functions 1; and perturbation corrections E; are already calculated for
i=0,...,n— 1. It follows from eq. (6) that the wave function 1), depends on the perturbation energy
E,, and the coordinate x

Yn = Yn(En, 2). (7

Here, the perturbation energy E,, is taken as a variable in the wave function ¥, (En,z). Calculating the
derivative of ¥, (En,z) with respect to the energy E, we get from eq. (6)

(Ho — Eo)%mx) =o(z),n=1,2,.... (8)

This equation shows that the derivative

Y (En,x)
—B—En—_ = F(z) 9)

is a function F(z) independent of E,. A general solution of eq. (8) is a linear function of E,

"/’n(Em 2:) = EnF(z) + a'l/Jo(z) o3, (10)
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where a and # are arbitrary constants. However, it follows from eq. (6) that
B =0 (11)
Equation (10) is very interesting result since it yields the equation for the perturbation energies

"/’n(Emz) L wn(o, :lt)

¢ ot F@)

(12)

valid for arbitrary z.
Now we assume that instead of the usual orthonormality condition (1o|%r) = o,n, the perturbation
function %,, obeys the condition

'l/)n(En, :L‘o) = (13)
It is seen from egs. (10) and (11) that this condition corresponds to
E,F(z)
- : (14)
%o(2)

This condition can be used in an arbitrary point zo, for which g(zo) # 0. Taking z = z in eq. (12)
we see that the perturbation energy E, can be calculated from the equation

__¢n(0’x0)
B, = “Fzg) (15)

The value of F(z,) can be most easily calculated from the equation

F(xo) = ¢ﬂ(En’37ElJ) :g‘rll(Ena xO) (16)

following from eq. (10). Due to independence of F(z) on E,, energies E and E, in this equation can
be arbitrary numbers. The most simple result is obtained for E, =1, E =0 a.nd n = 1 when the final
expression for F'(z) equals

F(20) = ¥1(1, z0) — %1(0, zo)- (17)

This method is a very interesting example of the use of solutions which are not quadratically inte-
grable. Equation (15) shows that to calculate E, it is not necessary to solve the differential equation
(6) and search for the solution satisfying the condition (13). To calculate E,, it is sufficient to evaluate
the function —,,(0,zo) and divide it by F(zo). The functions ¥,(0,z), ¥:1(1,z) and %:(0,z) do not
in general satisfy the condition (13) and are not quadratically integrable. Therefore, depending on the
value of zg, values of 1,(0,2¢) and F(zo) may be large. However, the resulting value of E,, as given by
eq. (15) may be small. Due to the simplicity of eq. (15), the calculation of the perturbation energy E,
is very fast and straightforward. If the perturbation energy E,, is known the wave function 3, can easily
be calculated from eq. (6). We note that the energy spectrum of the zero order hamiltonian Hy is not
needed in the calculation.

It is seen that the method described in this section can be used for one-dimensional as well as
multi-dimensional problems.

In this paper, we show that this method can be successfully applied also to two-dimensional systems.

Difference equations

In this section, we describe a numerical method for solving the perturbation equations suitable for
one-dimensional as well two-dimensional systems. In two dimensions, the Schrédinger equation has the
form

o? 82

A 18

(-2 - s + Ulo)) = B 9
The partial derivatives in this equation can be replaced by finite differences

62¢ 1/’1’—1 J 2¢1 J + ¢1+1 J

T i) ’ 19

Oz? a? i

621/) "pt,J ok 2¢t T ¢$,J+1 (20)

ay2 a2
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where a is a step of the grid. Using the last equations in (18) we obtain a system of equations

—Pic1,j-1 = Yic1,i41 — Yis1,j1 — Yirin + 2+ 07 Uiy — E)ghi; =0 (21)
We assume that the boundary conditions for all orders of the perturbation theory have the form
1/)(3:5) = 07 (22)

where z; are points on the rectangular border sufficiently far from the minimum of the potential U (z,y).

The system of equations (21) is a system of (n — 1) equations with (n — 1)* unknowns, where the
grid of (n+1) x (n+ 1) points in the rectangle is considered. Here, the points i = 0 and 7 = n are located
on the rectangular border.

Solution of equations

First we solve the zero-order eigenvalue problem

(Ho = Eo)tho = 0. (23)
First we calculate Eg. Then we put b= (10718,107'%,...,107'8) and get
Yo = (Ho — Eo)™'b. (24)
Then we solve the problem
Hotpy + Hitho = Eothr + Ertho (25)
yielding
Y1 = (Ho — Eo) ™' (—=H1 + Ex)to. (26)
From this equation we obtain the wavefunction v; for E; = 0 and F; =1 and get
F(:L‘o) = 1/)1 (1,2:0) - 'l/)l (0, Zo). (27)
The energy E; follows from the equations
= 1/)1 (0’ x()) (28)
P T )
Then we solve the equation
¥ = (Ho — Eo) ™' (—H1 + E1)o (29)

with the energy given by eq. (28) and obtain the wavefunction ¥; corresponding to Ej.
For general n, we solve the equations

n
H0¢n < Hl"/’n—l = Z Ei'l/)n—i- (30)
=1
For E, = 0, these equations lead to
n—1
Yn = (Ho — Ep)™! |:(—H1 + Ey)Yn-1 + Z Ei’l/)n—l] ! (31)
i=2
The perturbation energy E,, is obtained from the equation
_ %a(0,%0) 32
=G 5

The wavefunction v, corresponding to eq. (32) equals

i=2

Yn = (Ho — Eo)™! [("Hl + E1)n-1 + ZEiwn—l] . (33)
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Numerical results

As an example of using this method we calculated the perturbation energies for the well-known
hamiltonian

Hy=p2 +p,+2° +y° (34)

H, = 2%y — 2® — ¢~ (35)

The perturbation energies can be obtained exactly and compared with those obtained by our method.
Using to the algorithm described in the preceding section we calculated ten perturbation energies at

points zo = [0,0] and zo = [1,1] for grids of 40 x 40,42 x 42,...,60 x 60 points. The values given in the
table were obtained by means of the Richardson extrapolation.

n E, numerically for zo = [0,0] E, numerically for zo = [1,1] exact E,

1 -0.750000% 10° -0.750000x 10° -0.750000x 10°
2 -0.9375%x 107! -0.9374x 1071 -0.937500%x 107!
2 -0.2344x107! -0.2343x107! -0.234375%107!
4 -0.1331x10°! -0.1330x107! -0.133057x 107!
5 -0.321x1073 -0.335x10~2 -0.315348 %1073
6 -0.1329x10~! -0.1307x 107! -0.132794x107!
7 0.239x10! 0.233x107! 0.240443x 1071
8 0.73%10~1 -0.71x107! -0.743030x 107!
9 0.23x10° 0.22x10° 0.234920x 10°

10 -0.8x10° -0.8x10° -0.845542x10°

Conclusions

We have shown that the method of calculating the perturbation energies based on the fact that
Yn(En, o) is for fixed zo a linear function of E, combined with a simple method of the solution of
the differential equations for the perturbation functions can be extended to two dimensions. The main
advantage of this method is that the knowledge of the complete systems of the energies and wave
functions for the zero-order problem (Ho — Eo)io = 0 is not needed here. The numerical results for a
model hamiltonian agree well with the exact ones. The numerical tests confirm that, within numerical
errors, the results are independent on the choise of the point zg.
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