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Abstract. Any disordered linear chain may be conceived as consisting of connected finite 
ordered subchains of different lengths. We show that the integrated as well as differential 
densityofelectronstatesof any disordered chain may approximately be written as an average 
over the densities of states of the subchains. The accuracy of the approximate density of 
states isgiven by 1/A, where Ais the averagelengthofthesubchains. Numericalresultsshow 
that the approximationisverygoodforriabout lOorMand themain featuresofthedensity 
of states are reproduced even for I = 5 or 3. 

1. Introduction 

Any disordered linear chain may be conceived as consisting of connected finite ordered 
subchains of different lengths. The larger the average length A of the subchains, the 
more significant is the contribution of the subchains to the resulting density of states of 
the whole chain. For very large 6, all the main features of the density of states have to 
be determined by the properties of the subchains and there is agood chance of describing 
approximately the density of states of a disordered chain in terms of the densities of 
states of the subchains. For small A, the interaction of the subchains becomes significant 
and the density of states of a disordered chain is a complex function of the properties of 
the subchains, their interaction and the concrete character of disorder. In such a case, 
description of the density of states of a disordered chain in terms of the densities of states 
of the subchains may be only a rough approximation. 

The aim of this paper is to find, in the above-formulated sense, an approximate 
formula for the density of electron states of a disordered chain in terms of known 
densities of states of the subchains. This is done in sections 2 4  for the integrated as well 
as the differential density of states. Numerical results for general, diagonal and off- 
diagonal disorder are given in section 5. It appears that the approximate formulae give 
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very good results for A about 10 or 20 and the main features of the density of states are 
reproduced even for A = 5 or 3. 

2. Approximate formula for the integrated density of states 

If we assume for simplicity the nearest-neighbour interaction and denote the diagonal 
matrix elements of the electron Hamiltonian Has E and the off-diagonal elements as V 
the Hamiltonian discussed in this paper has the form 

ifrom the mth subchain 

the nearest neighbours i and jfrom the mth subchain 

H,.= V the nearest-neighbour interaction between the mth and (1) 
I [ for [ nth subchains 

otherwise, 

In order to express the integrated density of states of a disordered chain in terms of 
those of the subchains we use the negative eigenvalue theorem. This theorem which 
appears in different forms in different fields of physics [l-111 allows us to calculate the 
number of eigenvalues of a real symmetric matrix H less than a given energy E. This 
number is an unnormalized integrated density of states denoted as [(E)  henceforth. The 
normalized integrated density of states, i.e. the relative number of eigenvalues less than 
E, will be denoted as f ( E ) .  

In this paper the following formulation of the negative eigenvalue theorem [ l ,  7, S] 
is used: 

I ( E )  = I: O(-X,)  

where O(x) = 1 for x P 0 and O(x) = 0 otherwise, the real numbers X, are (1.1) 
elements of the matrices U,: 

U , = H - E  (3) 

U, = Z,-I - Y,- IYT-,lXt-,~ (4) i = 2 . .  . . , n  
and the matrices U, are partitioned as follows: 

The cross denotes the Hermitian conjugation. 
To express the density I ( E )  of states of a disordered linear chain in terms of those of 

the subchains we introduce the following numbering of atoms. First we number, say 
from left to right, all atomsin the subchainsexcept for the last atom in any subchain. In 
the second step we number the remaining atoms at the ends of the subchains. The 
Hamiltonian then has the structure shown in equation (6). Only the upper triangle of 
the Hamiltonian His shown. The blocks correspond to the tridiagonal Hamiltonian for 
the subchains with the last atoms removed. The diagonal matrix elements cl, E ~ ,  E ~ ,  . . . 
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correspond to the last atoms in the subchains. The interaction of these atoms with the 
last and first atom in the corresponding blocks is also shown. 
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Now we apply the negative-eigenvalue theorem to the matrix H - E. It is obvious 
from equations (2)-(5) that when applying the theorem to the upper left part of H - E 
containing blocks shown in equation (6) we get the sum of the integrated densities of 
states of the non-interacting subchains with the last atoms removed. Their interaction is 
taken into account in the next step when the numbers Xi corresponding to the matrix 
elements E , ,  e l ,  E ~ ,  . . .  shown in equation (6) are calculated. We get as a result 

r 

Here, the summation runs over the length of the subchains n = 1,2 ,3 , .  .. and the values 
of the diagonal and off-diagonal elements E and V, respectively. Nn,c,v is the number of 
the subchains for given n,  e and V and is the integrated density of states of the 
isolated ordered subchain with n atoms and the matrix elements E and V. The last term 
in equation (7) is the correction to the previous sum'representing the effect of the 
removed atoms and the interaction of the subchains. It takes into account also one-atom 
'subchains' which are not included in the first sum. This term is in general complicated; 
however, it must be less than or equal to the number of the atoms removed from the 
subchains: = 

o G 2 0 ( - x i ) s  z zx1. 
i "=I  E v 

Now, dividing equation (7) by the total number of atoms given by 
ca 

N = z x x n  
"=I E v 

we get the following expression for the normalized integrated density of states: 

Introducing the average length of the subchains given by 

where N,is the number of the subchains and the probability 
ti = N / N ,  
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~ n , r . v  = Nn.r,vfNr (12) 

of finding the subchain with given n, E and V ,  we can rewrite equation (10) in the form 

The first sum in equation (13) is not normalized as it goes to (i - l)/E for E+ m. 
Normalizing it to unity and taking into account the relation 

we get the upper bound to the difference between the exact and approximate integrated 
density of states: 

This is the result that we mentioned in the introduction. The exact density iof states is 
approximated by the sum of the densities of states of the ordered finite linear 
subchains. The accuracy of the approximate expression is given by l/C. 

We note that the assumption ofthe nearest-neighbour interaction in the Hamiltonian 
(1) is not essential. Assuming for example the second-nearest-neighbour interaction we 
could select an elementary unit consisting of two atoms. The interaction of the elemen- 
tary units would be then the nearest-neighbour interaction and n' would denote the 
average number of elementary units. 

The approximate density of states in equation (15) corresponds to the removed last 
atoms in the subchains. It is possible, however, to find a better approximation. It is 
obvious that it is not necessary to remove these atoms. To get non-interactingsubchains, 
it is sufficient to put V,, = 0. The corresponding approximate density of states reads 

It is not, however, possible to derive an estimate of the accuracy of this approximate 
density of states directly. We obtain first 

Then, using equations (13), (14) and (17) the lower and upper bounds to the difference 
?(,E) - iapP(E) may be derived: 

= )  s - - - z n ( z P n . * , v  n' n i , v  - e. V P"+l,&V 
1 1 

Here, > O  and <O denote the summation over positive and negative terms 
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Pr.v~n.r .v  - &,vpntl,s,d, respectively. Inaspecid case &,vP~,..v a & . V P . + I . ~ , V W ~  

(19) 

have the simple result 

/f(E) - ?,,(E)I S l/E 
This includes the case P " , ~ ,  = p.+ 

As the approximate density of states (16) corresponds to smaller changes in the 
Hamiltonian (1) than that in equation (15) and usually gives better results, the rest of 
the paper is devoted to the discussion of the approximation based on equation (16). 

n = 1, . . . , nmaX - 1 investigated in section 5 .  

3. Approximate integrated density of states 

The integrated densityfn,,, of states appearing in equation (16) is the integrated density 
of states of the ordered linear chain with n atoms, the diagonal matrix element of the 
Hamiltonian E and the off-diagonal element V. The corresponding system of difference 
equations has the form 

E C ]  + Vc, = Ec, 

Vci-1 + E C ~  + V C , + ~  = Ec; i = 2 , .  . ., n - 1 (20) 
Vc,_, t EC, = Ec, 

where ci are the components of the eigenfunction. The solution of this system of 
equations is well known [12]. The energies in which we are interested here equal 

Ei = E + 2Vcos[in/(n + I)] i =  1, .  . ..n (21) 
so that fn,EIVis 

where 

cin = cos[in/(n t I)]. 

For simplicity let us assume now the separation of the probabilitiesp.,,, in the space 
of variables n ,  E and V 

P..e.v = P.PS.V. (24) 

f a p p ( ~ )  = : 

The approximate density f ( E )  of states (equation (16)) then becomes 

(25) 
l m  

np, Z Z P ~ , ~ L . ~ . ~ ( E ) .  
nn=1 e v  

For a continuous distribution of E and V we get 

where the region of the integration is shown. This simple expression is an interesting 
result giving the relation of the approximate integrated density of states and the inte- 
grated density of states in the space of E- and V-distributions. 
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Assuming diagonal disorder only,p,,v = pr, we get 
IE-2IYCin p .  d E  

p.. d e  d V = (27) I r+ZIVlr,"CE -cc 

where the relation to the integrated density of states in &-space is clearly seen. 
For the off-diagonal disorderp,,, = pv a similar result can be derived. 
Especially simple are the above formulae for the uniform distribution of the prob- 

abilities in E- or V-space. For the uniform distribution in &-space given by 

~e 1P~max E E ( - E,,,) (28) 
we get 

in V-space we have the following result: 

p v d V =  

Q(E - E )  

1 

for c," = 0 

for E 3 E + 2V,,c," and 
c,. > 0 or E 2 E + 2Vmmc,. and c,, < 0 

forEE(&f2Vm,.c,.,E+2V,,,c,,) 
and c , ~  > 0 

E - E - 2Vm,.c,. 
2(Vm - Vmm)C,n 

0 otherwise. 
(31) 

4. Approximate differenti density of states 

According to equations (16) and (22), the approximate differential density of states 
given by 

equals 
gapp(E) = dfapp(W/dE (32) 

where 
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is the differential density of states of the finite ordered linear chain corresponding to 
equations (20). 

In the case of the continuous distribution of E and Vwe get from equation (26) 

This simple expression shows the relation between the electron density g ( E )  of states 
and the differential density of states in E- and V-space. 

In a special case of the uniform distribution in &-space given by equation (28) we 
have 

Similarly, for the uniform distribution in V-space (30) we get 

S ( E  - E) for c,. = 0 

Here, sgn(X) denotes the sign of x. 
The upper and lower bounds to g ( E )  - gapp(E) analogous to equation (18) cannot 

be found directly. In analogy with [9], however, it is possible to derive such bounds for 
the moments of the density of states: 

J K  = ICE' E k g ( E )  dE. 
I 

For example fork = 0 we get from equation (19) 

IJo - JBppl = I f ( & )  - ?(E,)  - fapp(Ed + &pp(E~)l =z IT(&) - r a p p ( E 2 ) I  

+ If@,) - Tapp(E,)I 2/E. (39) 
This equation is valid for arbitrary energies El and Ez and for 'c,,c, p.,sv2 
XE,Vpn+l ,E ,V .  Using the per parts integration, similar results may be derived for the 
higher moments Jk,  too (see 191). 

5. Numerical results 

The accuracy of the approximate formulae for the integrated and differential density of 
states was tested on the following three problems. 
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(i) The uniform discrete distribution of the probabilities in n-,  E- and V-space. We 
assumed for simplicity that 

P" = 11.- 

P e  = a  
forn = 1,. . ., nmaX 

for E = -2.2 

pV=4 for V = 1,2. 

The calculations for case (i) as well as cases (ii) and (iii) were done for the maximum 
length nmar of the subchains equal to .S,9,19 and 39, i.e. for fi  = 3,5,10 and 20. 

(ii) The uniform distribution of the probabilities in n-space and the continuous 
uniform distribution in &-space. 

forn = 1,. . .,n,, 

for E E (-E,,, Emax) 

(iii) The uniform distribution of the probabilities in n-space and the continuous 

(41) 
P~ = l/nmu 

P C  = 1 / 2 ~ m a x  

where E,, = 1. 

uniform distribution in V-space. 

forn = 1,. . ., n,, 
(42) 

P" = 1Inm.w 

Pv = 1/(Vnla - V") for V E  (V,,, V-), 

where V,,, = 1 and V,,, = 2. 

The exact integrated and differential densities of states of a disordered infinite linear 
chain have in general continuouscharacter. The numerically calculated density of states 
also has a similar character if the chain is sufficiently long. On the other hand, our 
approximate formulae express the exact density of states in terms of the densities of 
states of the finite chains with the length n = 1. . . . , n,,. which always have a discrete 
energy spectrum. It is obvious that such an expression cannot describe details of the 
exact density of states well on an energy scale smaller than the minimum energy interval 
between the eigenvalues of the subchains. This energy interval is for the investigated 
problems 

A E  = 21V/,,{cos[n/(n,, + l)] - cos[Lz/(n,, + l)]} (43) 
where /VImin is the smallest /VI appearing in the problem. 

In order to overcome the above-mentioned discreteness of the approximate density 
of states we replaced the discrete energies of the subchains by the Lorentzian curves 
following from one of the representations of the &function 

6 ( E )  = (l/n)AE/(E2 + AE2) (44) 
Where AEisthehalf-widthofthe6-function. UseofAEgiven byequation (43)shouldnot 
1eadtoanysubstantiallossofaccuracy.Theintegrateddensityofstatescorresponding to 
equation (44) is 

@ ( E )  = (l/n)[tan-'(E/AE) + n/Z]. (45) 
Equations (44) and (45) were used in numerical calculations of the approximate densities 
of states according to sections 3 and 4. 

Numerical calculations were done for the disordered chains with 7000 (n,,,, = 5), 
4000 (nmaX = 9) and 2000 (rima = 19 and 39) subchains. The resulting order of the 
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Table 1. Numerical results for the integrated density oi states. [i - iJm is the absolute 
yalue of the maximum difference of the exact density Iofstates and apDroximate densitv 
Iapp of states over the whole energy spectrum. 

(i ij  19 10 
(ii) 39 20 

0.333 
0.2 
0.1 
0.05 

0.333 
0.2 
0.1 
0.05 

0.333 
0.2 
0.1 
0.05 

0.056 
0.026 
0.0099 
0.0087 

0.075 
0.043 
0.022 
0.012 

0.082 
0.052 
0.028 
0.015 

Hamiltonian H was always at least 20000. The subchains were randomly generated in 
agreement with the distributions p n ,  ps and pv described in cases (i), (ii) and (iii). The 
exact and approximate densitiesof states were calculated in 150energysteps covering the 
wholeenergy spectrum. The exact integrateddensity of states wascalculated numerically 
from equation (2). The approximate integrated density of states was calculated using 
equations (16). (22), (29) and (31). 

The results for the integrated density are summarized in table 1. We see that the 
maximum difference of the exact integrated density iof  states and approximate inte- 
grated density iapp of states is on the whole range of the energy spectrum and for all 
n,,, = 5,9,19 and 39 smaller than 0.082. The actual maximum difference - f,,],, is 
in all cases about five times smaller than the upper bound l/fi following from equation 
(19). Note that the agreement between the exact and approximate densities of states is 
relatively good even for E = 3, i.e. for very short subchains. 

The integrated density of states is only a little sensitive to details of the distribution 
of the eigenvalues in the energy spectrum. Its derivative, the differential density g ( E )  
of states, is more interesting. The exact differential densityg(E) of states was calculated 
numerically using equation (2). The approximate densityg,,,(E) of stateswascalculated 
from equations (33)-(37). The results are shown in figures 1-3. 

We see that the agreement between g ( E )  and gapp(E) is very good in cases (i) and 
(U) and n- = 19 and 39. The agreement in case (iii) isgood except for the central peak 
in the approximate density gap,( E )  of states. This peak corresponds to the delta function 
term6(E - ~)inequation(37).ThishighlydegeneratecentraleigenvalueE = &appears 
in equation (34) for any subchain with an odd number n of atoms and is therefore a 
consequence of our approximate formula. In general, it does not appear in the exact 
density of states. If necessary, this peak can be removed by using larger A E  in equation 
(44) for this energy. We note also that there is no problem with this peak for combined 
diagonal and off-diagonal disorder (case (i)) as weil as for diagonal disorder only (case 
(ii)). 

The agreement between the exact and approximate density of states is reasonably 
good even for n,,, = 9, where the upper bound to the integrated density of states 
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Figure 1. The numerically calculated exact denrityg(E) of slates (-----) and approximate 
densityg.,,(E)ofstates(-)forcase(i): (n)n,, = 5;(b)n,,. = 9;(c)n,,= 19;(d)n,,, = 
39, 

l/ii = 3 in equation (19) suggests that the approximation may not be good. We note 
that some main characteristics of the exact density of states are reproduced by the 
approximateformulaevenforn,, = 5,i.e. for* = 3. Becauseofthelarge AE, however, 
most details of the density of states are lost in this case (see figures 1(a),  2(a)  and 3(a)).  

6. Conclusions 

Using the negative-eigenvalue theorem and partitioning of a disordered linear chain 
into the ordered linear subchains we have derived approximate formulae for the inte- 
grated and differential densities of states of the chain. These formulae express the exact 
density of states as a sum of analytically known densities for the subchains and show also 
the relation between the exact density of states and the density of states in E- and V- 
space. Upper andlower bounds to thedifferenceof theexact andapproximateintegrated 
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Figure 2. The numerically calculated exact densityg(E) of states (-----) and approximate 
demit)' gapp(E) of states (-) for case (ii): (a) nmnx = 5 ;  (b) n,,, = 9; (c) nmu = 19; ( d )  
n,- = 39. 

density of states and moments of the differential density of states were also given. The 
accuracy of the approximation is given by l/Z, where ri is the average Iength of the 
subchains. Numerical tests of the approximate formulae were done for the chains with 
the uniform distribution of the lengths of the chains from 1 to nmax. Three investigated 
cases correspond to both diagonal and off-diagonal disorder, to diagonal disorder and 
to off-diagonal disorder only. The agreement between the exact and approximate 
integrated and differential density of states is very good for the chains with ri = 10 and 
20 with the exception of the case with off-diagonal disorder only. The reason for the 
existence of the central peak in the differential density of states in this case is explained 
and a method of removing it is suggested. The agreement for the short subchains with 
ri = 3 and 5 is not as good; however, the basic features of the differential density states 
are, especially for IZ = 5, reproduced. 

The results of this paper can be applied to distorted linear polymers, heterostructures 
and similar systems. 
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Figure 3. The numerically calculated exact density g(E) of states (-----) and approximate 
density gapp(E) of stater (-) lor case (iii): (a) nmu = 5; ( 6 )  n... = 9; (c) nMX = 1 9  (d) 
nmax = 39. 
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