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Abstract. Any disordered linear chain may be conceived as consisting of connected finite
ordered subchains of different lengths. We show that the integrated as well as differential
density of electron states of any disordered chain may approximately be written as an average
over the densities of states of the subchains. The accuracy of the approximate density of
states is given by 1/7, where fi is the average length of the subchains, Numerical results show
that the approximation is very good for 7 about 10 or 20 and the main features of the density
of states are reproduced even for = 5o0r 3.

1. Introduction

Any disordered linear chain may be conceived as consisting of connected finite ordered
subchains of different lengths. The larger the average length 7 of the subchains, the
more significant is the contribution of the subchains to the resulting density of states of
the whole chain. For very large A, all the main features of the density of states have to
be determined by the properties of the subchains and there is a good chance of describing
approximately the density of states of a disordered chain in terms of the densities of
states of the subchains. For small 7z, the interaction of the subchains becomes significant
and the density of states of a disordered chain is a complex function of the properties of
the subchains, their interaction and the concrete character of disorder. In such a case,
description of the density of states of a disordered chain in terms of the densities of states
of the subchains may be only a rough approximation.

The aim of this paper is to find, in the above-formulated sense, an approximate
formula for the density of electron states of a disordered chain in terms of known
densities of states of the subchains. This is done in sections 24 for the integrated as well
as the differential density of states. Numerical results for general, diagonal and off-
diagonal disorder are given in section 5. It appears that the approximate formulae give
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very good results for A about 10 or 20 and the main features of the density of states are
reproduced even for /£ = 5 or 3.

2. Approximate formula for the integrated density of states

If we assume for simplicity the nearest-neighbour interaction and denote the diagonal
matrix elements of the electron Hamiltonian H as £ and the off-diagonal elements as V
the Hamiltonian discussed in this paper has the form

(€m [ i from the mih subchain
Von the nearest neighbours { and j from the mth subchain
Hy=qV,, for 4 the nearest-neighbour interaction between the mthand (1)
nth subchains
L0 L otherwise.

In order to express the integrated density of states of a disordered chain in terms of
those of the subchains we use the negative eigenvalue theorem. This theorem which
appears in different forms in different fields of physics [1-11] allows us to calculate the
number of eigenvalues of a real symmetric matrix H less than a given energy E. This
number is an unnormatized integrated density of states denoted as /( E) henceforth. The
normaiized integrated density of states, i.¢. the relative number of eigenvalues less than
E, will be denoted as I( E).

In this paper the following formulation of the negative eigenvalue theorem [1, 7, §]
is used:

I(E)= 2 ©(-X,) 2)

where ®(x) =1 for x =0 and O(x) = 0 otherwise, the real numbers X, are (1,1)
elements of the matrices b,:

U=H-E (3
U =Z_ - Y. YL/ X, i=2,...,n 4)
and the matrices U, are partitioned as follows:
T ;-13] (5)
Y, : Z;

The cross denotes the Hermutian conjugation.

To express the density J( £) of states of a disordered linear chain in terms of those of
the subchains we introduce the following numbering of atoms. First we number, say
from left to right, all atoms in the subchains except for the last atom in any subchain. In
the second step we number the remaining atoms at the ends of the subchains. The
Hamiitonian then has the structure shown in equation (6). Only the upper triangle of
the Hamiltonian A is shown. The blocks correspond to the tridiagonal Hamiltonian for
the subchains with the last atoms removed. The diagonal matrix elements €;, £, €3, . . .
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correspond to the last atorns in the subchains. The interaction of these atoms with the
last and first atom in the corresponding blocks is also shown.

........................ W
............. v,
............. LV,
= U Vy
" v b ©)
ué
m.é

Now we apply the negative-eigenvalue theorem to the matrix H — E. It is obvious
from equations (2)—(5) that when applying the theorem to the upper left part of H — E
containing blocks shown in equation (6) we get the sum of the integrated densities of
states of the non-interacting subchains with the last atoms removed. Their interaction is
taken into account in the next step when the numbers X, corresponding to the matrix
elements &y, £, &3, . shown in equation (6) are calculated. We get as a result

I(E) = ZEEN,,HEVI,,N(E)+2®( -X;). )

=l £
Here, the summation runs over the length of the subchams n=1,2,3,... andthe values
of the diagonal and off-diagonal elements £ and V, respectively. N, . v is the number of
the subchains for given n, £ and V and [, , , is the integrated density of states of the
isolated ordered subchain with » atoms and the matrix elements £ and V. The last term
in equation (7) is the correction to the previous sum representing the effect of the
removed atoms and the interaction of the subchains. It takesinto account also one-atom
‘subchains’ which are not included in the first sum. This term is in general complicated;
however, it must be less than or equal to the number of the atoms removed from the

subchains:
0<2@( X)<2221 (8)

n=1 ¢

Now, dividing equanon (7) by the total number of atoms given by
N= EEEn (9

a=1 g

we get the following eycpressmn for the normalized integrated density of states:

I =yie) =SSt ey LS eexy a0

Introducing the average length of the subchams given by

fi=N/N; (11)
where N, is the number of the subchains and the probability
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Pnev =NH.£,V/NS (12)

of finding the subchain with given n, £ and V, we can rewrite equation (10) in the form
- 1w . 1
IE)=~ 2 n 22 punrevinev(B) + 5 2 O(-X)). (13)
=t £V ]

The first sum in equation (13) is not normalized as it goes to (7 — 1)// for E— .
Normalizing it to unity and taking into account the relation

e

1
0<—2,0(-X,)< (14)
N7
we get the upper bound to the difference between the exact and approximate integrated
density of states:

I(E)“—-E Eanmvlﬂv(E) % (15)

This is the result that we mentioned in the introduction. The exact density 7 of states is
approximated by the sum of the densities 1, . , of states of the ordered finite linear
subchains. The accuracy of the approximate expression is given by 1/,

We note that the assumption of the nearest-neighbour interaction in the Hamiltonian
(1) is not essential. Assuming for example the second-nearest-neighbour interaction we
could select an elementary unit consisting of two atoms. The interaction of the elemen-
tary units would be then the nearest-neighbour interaction and 7 would denote the
average number of elementary units.

The approximate density of states in equation (15) cotresponds to the removed last
atoms in the subchains. It is possible, however, to find a better approximation. It is
obvious that it is not necessary to remove these atoms. To get non-interacting subchains,
it is sufficient to put V. = 0. The corresponding approximate density of states reads

=t

Le(E) == E nX Ep,, evlnev(E). (16)

ne=l [3

)

It is not, however, possible to derive an estimate of the accuracy of this approximate
density of states directly. We obtain first

_2npnsvfnsv=—2npn+lev'1nev+ En(PnsV Pn+I€V)1n£V (17)
Bopev R pev nnzV

Then, using equations (13), (14) and (17) the lower and upper bounds to the difference
K E) = I,,( E) may be derived:

-71_” (Zpuey = Zpusrer) <E) = FtE)

1 1
E—_—-:Zn (an.s.v - EPrﬁ-!.s.V)' (18)
n o n £V eV

n

Here, >0 and <0 denote the summation over positive and negative terms
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(Es. vPnev ™ Ze,Vpn + l,s,V)a respectively. Ina SPeCial case ze,Vpn,s, v= zz,‘t’pr:+1.ez,1»" we
have the simple result

\KE) — L, (E)| < 1/7. (19)

This includes the case p,, . v = Put1.e1, 1 = 1,. . ., Bny — 1 investigated in section 5.
As the approximate density of states (16) corresponds to smaller changes in the

Hamiltonian (1) than that in equation (15) and vsually gives better results, the rest of

the paper is devoted to the discussion of the approximation based on equation (16).

3. Approximate integrated density of states

The integrated densityl, , , of states appearing in equation (16) is the integrated density
of states of the ordered linear chain with n atoms, the diagonal matrix element of the
Hamiltonian £ and the off-diagonal element V. The corresponding system of difference
equations has the form

ECy +VC2:EC'1
VC,-_1+€C,'+VC"+1=EC,' i=2,...,?’1"“"1 (20)
Ve, + gc, = Ec,

»

where ¢; are the components of the eigenfunction. The solution of this system of
equations is well known [12]. The energies in which we are interested here equal

E; =g + 2V cosfiz/(n + 1}] i=1,....n (21)

sothat [, . ,is

Inev(B) =5 2 O(E - £ ~2|Vlcu) 22)
where
¢y = coslizr/(n + 1)]. (23)

For simplicity let us assume now the separation of the probabilities p,, . y in the space
of variables n, e and V

Puev = PnPey- (24)
The approximate density I( E) of states (equation (16)) then becomes

- 1 < -

Iapp(E) = 7 2 ngy E %pE.VIn.e.V(E)' (25)

n=1 3

For a continuous distribution of £ and V we get

- 1 < =

Iapp(E)=_— EPnEI Pa.VdeV (26)

fon=1  i=1YesnVic,<E

where the region of the integration is shown. This simple expression is an interesting
result giving the relation of the approximate integrated density of states and the inte-
grated density of states in the space of &- and V-distributions.
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Assuming diagonal disorder only, p, = p,, we get

J‘ E-2|Vlc,,

pevdedV=[ " "p,de @7
e+ 2Vicin<E —o
where the relation to the integrated density of states in £-space is clearly seen.

For the off-diagonal disorder p, = py a similar result can be derived.

Especially simple are the above formulae for the uniform distribution of the prob-
abilities in £- or V-space. For the uniform distribution in e-space given by

Pe= 1/2Emax £€ (_Emax» Emax) (28)
we get
E-2VICy, E-2Vlc, + ¢
j p.de= ( 22| n ¥ ) fOr3 = £na < E = 21V|ei < €pas
o £ nax .
0 E - E!VICM = — fmax.
(29)
For the uniform distribution of the probabilities
Pv = 1/(‘L’frnax - Vmin) Ve (vmim Vmax)* Vmin! Vmax >0 (30)
in V-space we have the following result:
(O(E - ¢) forc,, =0
1 forE=e+ 2V ,c, and
Cp 200t Ex e+ 2V, and ¢, <0
E - g~ 2V 4Cin for E € (& + 2V yinCin» € + 2Vpulin)
2(Vmax - Vmin)Cm and Cin >0
f p‘,' d V _—"‘]
e-+2|Vicin<E
E—¢g— ZVmaxci,, forE & (E -l_-‘_ZVm,Sc;,,, &+ 2Vminc‘-,,)
2(Vmin - Vmax)cr'n and Cin < 0
LO otherwise,

(31)
4. Approximate differential density of states

According to equations (16) and (22), the approximate differential density of states
given by

8o E) = ALy (E)/AE (32)
equals

8B =7 2 1 S Z e (B) &)

where
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ncs(B) = 2 8(E — & = 2Vie) (34)

is the differential density of states of the finite ordered linear chain corresponding to
equations (20).
In the case of the continuous distribution of £ and V we get from equation (26)

B =23 50 3 (]

e42[Vie < E

pey dedv). (35)

This simple expression shows the relation between the electron density g( £) of states
and the differential density of states in - and V-space.
In a special case of the uniform distribution in g-space given by equation (28) we

have
d
EEU PE“) =

£+2|V]cim<E

max — £) — O{—£qa — E)].  (36)

Similarly, for the uniform distribution in V-space (30) we get

|
dE E+2|Viein<E
O(E - ¢) forc,, =0
i
= BV = Voie, 1sgn(c,-,,) (O + 2V ascin — E) (37)
—0{g + 2Vt — E)) forc,, #0.

Here, sgn(yy) denotes the sign of .

The upper and lower bounds to g(E) — g,,,( E) analogous to equation (18) cannot
be found directly. In analogy with [9], however, it is possible to derive such bounds for
the moments of the density of states:

I = f * Bhe(E) dE. | (38)
£

For example for X = 0 we get from equation (19)
iJO = ]3pp| = |T(E2) - f(El) - fapp(EZ) + iapp(El)l = li(E2) - iapp(E2)|
+ [[(Eq) — Lpp(E1) < 2/A. €2)

This equation is valid for arbitrary energies E; and E, and for £, p, . v=
Ze.vPr+1,ev- Using the per parts integration, similar results may be derived for the
higher moments J,, too (see [9]).

5. Numerical results

The accuracy of the approximate formulae for the integrated and differential density of
states was tested on the following three problems.



2646 L Skala

(i) The uniform discrete distribution of the probabilities in n-, &- and V-space. We
assumed for simplicity that ‘

Pn=1/N0u forn=1,...,
pP.=% fore=—2,2 (40
py=1% forV=1,2

The calculations for case (i) as well as cases (ii) and (iii) were done for the maximum
length n,,,, of the subchains equal to 5, 9, 19 and 39, i.e. for 7 = 3, 5, 10 and 20.
(ii) The uniform distribution of the probabilities in n-space and the continuous
uniform distribution in £-space.
Pn = 1/Rmax forn=1,...,

(41)

P = l/zsmax fore € (_Emax: Emax)

where £, = 1.
(iii) The uniform distribution of the probabilities in #-space and the continuous
upiform distribution in V-space.

pn=1/nmax forn=1,..., Ny
Pv = 1/(Vmax - Vmin) forvVe (Vmin, Vmax)7

where V,, = 1l and V,, = 2.

(42)

The exact integrated and differential densities of states of a disordered infinite linear
chain have jin general continuous character. The numerically calculated density of states
also has a similar character if the chain is sufficiently long. On the other hand, our
approximate formulae express the exact density of states in terms of the densities of
states of the finite chains with the length n = 1, . . ., #.,, which always have a discrete
energy spectrum. It is obvious that such an expression cannot describe details of the
exact density of states well on an energy scale smaller than the minimum energy interval
between the eigenvalues of the subchains. This energy interval is for the investigated
problems

AE = 2| Vo teos[7/ (e + D] = cos[2/ (i + DI} (43)

where | V|, is the smallest | V| appearing in the problem.

In order to overcome the above-mentioned discreteness of the approximate density
of states we replaced the discrete energies of the subchains by the Lorentzian curves
following from one of the representations of the é-function

3(E) = (1/n)AE/(E* + AE?) (44)

where A Eisthe half-width of the d-function. Use of A E given by equation (43) should not
lead to any substantial loss of accuracy. The integrated density of states corresponding to
equation (44) is

©(E) = (1/x){tan"'(E/AE) + x/2]. (45)

Equations (44) and (45) were used in numerical calculations of the approximate densities
of states according to sections 3 and 4.

Numerical calculations were done for the disordered chains with 7000 (ny,, = 5),
4000 (Ryye =9) and 2000 (ny, = 19 and 39) subchains. The resulting order of the
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Table 1. Numerical results for the integrated density of states. [f -~ f,pplm is the absolute
value of the maximum difference of the exact density [ of states and approximate density
F.pp of states over the whole energy spectrum.

Case Pmax n /7 1= Ll s
@) 5 3 0.333 0.056
i 9 5 0.2 0,026
) 19 10 0.1 0.0099
(i) 39 20 0.05 0.0087
(i} 5 3 0.333 0.075
(i) 9 5 0.2 0.043
(ii) 19 10 0.1 0.022
(i) 39 20 0.05 0.012
(iii) 5 3 0333 0.082
(iii) 9 5 0.2 0.052
(iif) 19 10 0.1 0.028
(iif) 39 20 0.05 0.015

Hamiltonian A was always at least 20000. The subchains were randomly generated in
agreement with the distributions p,,, p, and py described in cases (i), (ii) and (iii). The
exact and approximate densities of states were calculated in 150 energy steps covering the
wholeenergy spectrum. The exact integrated density of states wascalculated numerically
from equation (2). The approximate integrated depsity of states was calculated using
equations (16), (22), (29) and (31).

The results for the integrated density are summarized in table 1. We see that the
maximum difference of the exact integrated density [ of states and approximate inte-
grated density /,p, of states is on the whole range of the energy spectrum and for all
Amax = 5,9, 19 and 39 smaller than 0.082. The actual maximum difference | — fopp|ma i
in all cases about five times smaller than the upper bound 1/7 following from equation
(19). Note that the agreement between the exact and approximate densities of states is
relatively good even for 7 = 3, i.e. for very short subchains.

The integrated density of states is only a little sensitive to details of the distribution
of the eigenvalues in the energy spectrum. Its derivative, the differential density g(E)
of states, is more interesting. The exact differential density g{ ) of states was calculated
numerically using equation (2). The approximate density g,.,( E) of states was calculated
from equations (33)-(37). The results are shown in figures 1-3.

We see that the agreement between g(E) and g,.( E) is very good in cases (i) and
{it) and »,, = 19 and 39, The agreement in case (iii) is good except for the central peak
in the approximate density g,,.( £) of states. This peak corresponds to the delta function
term 8( E — e)inequation (37). This highly degenerate central eigenvalue E = gappears
in equation (34) for any subchain with an odd number » of atoms and is therefore a
consequence of our approximate formula. In general, it does not appear in the exact
density of states. If necessary, this peak can be remnoved by using larger AE in equation
(44) for this energy. We note also that there is no problem with this peak for combined
diagonal and off-diagonal disorder (case (i)) as well as for diagonal disorder only (case
(ii)). _ '

The agreement between the exact and approximate density of states is reasonably
good even for n_,, =9, where the upper bound to the integrated density of states
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Figure 1. The numericaily calculated exact density g(£) of states (----- ) and approximate
density g,.o{ E) of states (——) for case (£): (2) ftma = 5 (0) pay = 9 (€) P = 195 () 1
9

max —

1/ = § in equation (19) suggests that the approximation may not be good. We note
that some main characteristics of the exact density of states are reproduced by the
approximate formulaevenfor ny,, = 5,i.e.for/i = 3. Because of the large AE, however,
most details of the density of states are lost in this case (see figures 1(z), 2(a) and 3(a)).

6. Conclusions

Using the negative-eigenvalue theorem and partitioning of a disordered linear chain
into the ordered linear subchains we have derived approximate formulae for the inte-
grated and differential densities of states of the chain. These formulae express the exact
density of states as a sum of analytically known densities for the subchains and show also
the relation between the exact density of states and the density of states in £- and V-
space. Upper andlower bounds to the difference of the exact and approximate integrated
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Figure 2. The numerically catculated exact density g(E) of states (----- ) and approximate
density go,,(E) of states (—) for case (ii): (2) nya = 3; (B) Myax = 9; (€} Pinax = 19; (d)
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density of states and moments of the differential density of states were also given. The
accuracy of the approximation is given by 1/7, where 7 is the average length of the
subchains. Numerical tests of the approximate formulae were done for the chains with
the uniform distribution of the lengths of the chains from 1 to n,,,. Three investigated
cases correspond to both diagonal and off-diagonal disorder, to diagonal disorder and
to off-diagonal disorder only. The agreement between the exact and approximate
integrated and differential density of states is very good for the chains with /# = 10 and
20 with the exception of the case with off-diagonal disorder only. The reason for the
existence of the central peak in the differential density of states in this case is explained
and a method of removing it is suggested. The agreement for the short subchains with
A = 3 and 5 is not as good; however, the basic features of the differential density states
are, especially for 7 = 5, reproduced.

The results of this paper can be applied to distorted linear polymers, heterostructures
and similar systems.
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