
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 265302 (6pp) doi:10.1088/1751-8113/41/26/265302

Two multi-dimensional uncertainty relations
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Abstract
Two multi-dimensional uncertainty relations, one related to the probability
density and the other one related to the probability density current, are derived
and discussed. Both relations are stronger than the usual uncertainty relations
for the coordinates and momentum.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ta

1. Introduction

Uncertainty relations, one of the fundamental results of quantum mechanics, have been studied
in a large number of papers (for a detailed review, see, e.g. [1]). The standard approach to
their derivation is based on the wavefunction. However, it has been shown in [2–4] that a large
part of the mathematical formalism of quantum mechanics can be obtained by generalizing
the statistical analysis of experimental results with the corresponding probability distribution
and probability density current. It is shown below that such an approach yields stronger
uncertainty relations than the usual ones.

The aim of this paper is to find and discuss a multi-dimensional form of two uncertainty
relations, one of which is related to the form of the probability density and the other one is
related to the probability density current.

2. First uncertainty relation

We consider the N-dimensional space with the coordinates

x = (x1, . . . , xN) (1)

and the probability density ρ � 0 given by the wavefunction ψ

ρ(x) = |ψ(x)|2. (2)
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It is assumed that this probability density fulfils the boundary conditions

ρ|∞xm=−∞ = 0, m = 1, . . . , N (3)

and the standard normalization condition∫
ρ(x)dτ = 1, dτ = dx1, . . . , dxN, (4)

where the integration is carried out over the whole space.
The mean values of the coordinates are defined as

〈xm〉 =
∫

xmρ dτ. (5)

The N × N covariance matrix (�X)2 is given by the equation

(�X)2
mn =

∫
(xm − 〈xm〉)(xn − 〈xn〉)ρ dτ. (6)

Assuming that cm are arbitrary complex numbers it can easily be verified that this matrix is
positive semidefinite

N∑
m,n=1

c∗
m(�X)2

mncn =
∫ ∣∣∣∣∣

N∑
m=1

cm(xm − 〈xm〉)
∣∣∣∣∣
2

ρ dτ � 0, (7)

where the star denotes the complex conjugate.
In the following discussion, the wavefunction ψ will be written in the form (see,

e.g. [2–4])

ψ = e(is1−s2)/h̄, (8)

where s1 = s1(x1, . . . , xN) and s2 = s2(x1, . . . , xN) are real functions. The functions s1 and
s2 give the probability density ρ

ρ = |ψ |2 = e−2s2/h̄ (9)

and the probability density current

jk = h̄

2mi

(
ψ∗ ∂ψ

∂xk

− ψ
∂ψ∗

∂xk

)
= 1

m

∂s1

∂xk

ρ. (10)

Further, we calculate the mean value of the momentum operator p̂m = −ih̄(∂/∂xm) which
must be real

〈p̂m〉 =
∫

ψ∗p̂mψ dτ =
∫

∂s1

∂xm

ρ dτ + i
∫

∂s2

∂xm

ρ dτ =
∫

∂s1

∂xm

ρ dτ =
〈

∂s1

∂xm

〉
. (11)

Similarly, we get

〈p̂mp̂n〉 =
∫

(p̂mψ)∗ (p̂nψ) dτ =
∫ (

∂s1

∂xm

∂s1

∂xn

+
∂s2

∂xm

∂s2

∂xn

)
ρ dτ

+ i
∫ (

∂s1

∂xm

∂s2

∂xn

− ∂s2

∂xm

∂s1

∂xn

)
ρ dτ

=
∫ (

∂s1

∂xm

∂s1

∂xn

+
∂s2

∂xm

∂s2

∂xn

)
ρ dτ (12)

and

(�P )2
mn =

∫
[(p̂m − 〈p̂m〉) ψ]∗ (p̂n − 〈p̂n〉) ψ dτ = 〈p̂mp̂n〉 − 〈p̂m〉〈p̂n〉

=
∫ (

∂s1

∂xm

∂s1

∂xn

+
∂s2

∂xm

∂s2

∂xn

)
ρ dτ −

∫
∂s1

∂xm

ρ dτ

∫
∂s1

∂xn

ρ dτ. (13)
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Analogously to the matrix (�X)2, it can be shown that the matrix (�P )2 is positive
semidefinite.

It can be verified that both matrices appearing in equation (13)

(�P1)
2
mn =

∫
∂s1

∂xm

∂s1

∂xn

ρ dτ −
∫

∂s1

∂xm

ρ dτ

∫
∂s1

∂xn

ρ dτ (14)

and

(�P2)
2
mn =

∫
∂s2

∂xm

∂s2

∂xn

ρ dτ, (15)

(�P1)
2 + (�P2)

2 = (�P )2 (16)

are positive semidefinite, too. The matrix (�P1)
2 depends on (∂s1/∂xm) and ρ (i.e., s2) and

can be different from zero for the nonzero probability density current j = (j1, . . . , jN) only
(see equation (10)). The second matrix (�P2)

2 depends only on the form of the wave packet
given by s2 and is independent of j. Therefore, the separation of (�P )2 into two parts given
by equations (14)–(16) has a good physical meaning. An analogous separation was discussed
also in [5] within the framework of the one-dimensional stochastic mechanics.

Now, we define a correlation matrix G

Gmn =
∫

(xm − 〈xm〉)
(

∂s1

∂xn

−
〈
∂s1

∂xn

〉)
ρ dτ (17)

and create a new 2N × 2N matrix M

M =
(

(�X)2 GT

G (�P1)
2

)
, (18)

where the superscript T denotes the transposition. To show that the matrix M is also positive
semidefinite we define the quantities fm

fm = xm − 〈xm〉, fN+m = ∂s1

∂xm

−
〈

∂s1

∂xm

〉
, m = 1, . . . , N. (19)

It follows from
2N∑

m,n=1

c∗
mMmncn =

∫ ∣∣∣∣∣
2N∑

m=1

cmfm

∣∣∣∣∣
2

ρ dτ � 0 (20)

that the matrix M is positive semidefinite, too. Further, we make use of a general result valid
for N × N matrices A,B,C and D, where D is a regular matrix(

1 −BD−1

0 1

) (
A B

C D

)
=

(
A − BD−1C 0

C D

)
(21)

leading to

det

(
A B

C D

)
= det(A − BD−1C) det(D). (22)

Applying this equation to the matrix M given by equation (18), the first multi-dimensional
uncertainty relation for the matrices (�X)2 and (�P1)

2 is obtained

det(M) = det{(�X)2(�P1)
2 − GT [(�P1)

2]−1G(�P1)
2} � 0. (23)

In the one-dimensional form, this relation can be written as∫
(x − 〈x〉)2ρ dx

∫ (
∂s1

∂x
−

〈
∂s1

∂x

〉)2

ρ dx �
(∫

(x − 〈x〉)
(

∂s1

∂x
−

〈
∂s1

∂x

〉)
ρ dx

)2

. (24)
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We note that the last inequality is nothing but the Schwarz inequality (u, u)(v, v) � |(u, v)|2
for the functions u = (x −〈x〉)√ρ, v = (∂s1/∂x −〈∂s1/∂x〉)√ρ and the inner product (u, v)

is defined by means of the integration over all x. Equation (24) was also derived within the
framework of Nelson’s stochastic mechanics [5].

3. Second uncertainty relation

Further, we replace the function s1 by s2 and repeat discussion made in the preceding paragraph.
Taking into account the equation〈

∂s2

∂xm

〉
=

∫
∂s2

∂xm

ρ dτ = −h̄

2

∫
∂ρ

∂xm

dτ = −h̄

2

∫
ρ|∞xm=−∞ dτ ′ = 0, (25)

where dτ ′ = dx1, . . . , dxm−1 dxm+1, . . . , dxN , the matrix element Gmm can be replaced by
G′

mm

G′
mm =

∫
(xm − 〈xm〉) ∂s2

∂xm

ρ dτ. (26)

Performing here the integration by parts in the variable xm, assuming that [(xm −
〈xm〉)ρ]∞xm=−∞ = 0 and using equations (4)–(5) we get

G′
mm = −h̄

2

∫
[(xm − 〈xm〉)ρ]∞xm=−∞ dτ ′ +

h̄

2

∫
ρ dτ = h̄

2
. (27)

By using equations (3)–(5) we get similarly

G′
mn =

∫
(xm − 〈xm〉) ∂ρ

∂xn

dτ =
∫

(xm − 〈xm〉)ρ|∞xn=−∞ dτ ′′ = 0, m �= n, (28)

where dτ ′′ = dx1, . . . , dxn−1 dxn+1, . . . , dxN . Equation (22) applied to the matrix

M ′ =
(

(�X)2 h̄/2
h̄/2 (�P2)

2

)
(29)

then yields the second multi-dimensional uncertainty relation

det

[
(�X)2(�P2)

2 − h̄2

4

]
� 0 (30)

or in the one-dimensional form∫
(x − 〈x〉)2ρ dx

∫ (
∂s2

∂x

)2

ρ dx � h̄2

4
. (31)

Due to equations (26)–(27), the last inequality is the Schwarz inequality for u = (x −〈x〉)√ρ

and v = (∂s2/∂x)
√

ρ. Equation (31) is known for example from [6], see also the stochastic
variational approach to the minimum uncertainty states [7]. Another discussion of equation
(31) can be found in [2–4].

4. Conclusions

The last uncertainty relation can be obtained by replacing (�P2)
2 in the matrix M ′ by

(�P )2 = (�P1)
2 + (�P2)

2. The resulting matrix remains positive semidefinite, and equation
(30) then leads to the multi-dimensional uncertainty relation

det

[
(�X)2(�P )2 − h̄2

4

]
� 0 (32)
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which is known for example from [1, 9, 10, 13, 14]. The one-dimensional form of this relation
is the Heisenberg uncertainty relation (see [11, 12])

〈(�x)2〉〈(�p̂)2〉 � h̄2

4
. (33)

There is one important difference between the usual uncertainty relations (32)–(33) and
the uncertainty relations (30)–(31). The usual uncertainty relations are based on using the
wavefunction ψ . In contrast to it, the uncertainty relations (30)–(31) use s2 = −(h̄/2) ln ρ,
i.e. the probability density ρ only. Due to equation (16), the uncertainty relations (30)–(31)
are in general stronger than the usual uncertainty relations. Similar arguments apply for the
uncertainty relations (23)–(24), too.

It is worth noting that the matrix

Imn =
∫

1

ρ

∂ρ

∂xm

∂ρ

∂xn

dτ = 4(�P2)
2
mn

/
h̄2 (34)

can be interpreted as the Fisher information matrix. The Fisher information in the one-
dimensional form (see, e.g. [15–23])

I =
∫

1

ρ

(
∂ρ

∂x

)2

dx (35)

and its matrix analogy are important quantities in statistical mathematics. They appear for
example in the Rao–Cramér inequalities [8, 16] playing a similar role in mathematical statistics
as the uncertainty relations in quantum physics.

Concluding, we see that the uncertainty relations (32)–(33) are in our approach replaced by
more detailed equations (23)–(24) and (30)–(31) for the information carried by the functions s1

and s2, i.e. information related to the probability density current j and the probability density
ρ. For real wavefunctions ψ , corresponding to s1 = 0, equation (24) gives trivial result
0 = 0, and equation (31) becomes equation (33). In a general case, equations (23)–(24) and
(30)–(31) are stronger uncertainty relations than equations (32)–(33). From this point of view,
equations (23)–(24) and (30)–(31) are preferable to equations (32)–(33).
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