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Large-order behavior for the perturbation energies of the hydrogen atom in mag-
netic field is derived. By means of the dispersion relations, the large-order behavior
of the series is determined by calculating the lifetime of the quasistationary states in
an imaginary magnetic field. This problem is treated by means of the modified
multidimensional WKB method. The asymptotic formula for the perturbation ener-
gies derived by Avron is generalized to the states with an arbitrary degeneracy. The
first order correction to the resulting formula is also found. Thus, the multidimen-
sional WKB method is for the first time explicitly carried out beyond the leading
approximation. The analytical results are verified numerically and an excellent
agreement between the two is found. The connection between our and conventional
semiclassical approximation is also briefly discussed. © 2006 American Institute of
Physics. [DOL: 10.1063/1.2168689]

I. INTRODUCTION

The problem of the hydrogen atom in the magnetic field is elementary but difficult and great
deal of effort has been devoted to its solution over the years (see, e.g., Refs. 1-21and references
given therein). Except for its own importance, it has been used as a relatively simple problem to
answer some more general questions, as for example determination of the large-order behavior of
the perturbation energies and related problem of the multidimensional WKB zipproximation,l’3’4
summation of the divergent perturbation series,>"*! application of the perturbation theory in the
degenerate case,” determination of the lower bounds to the eigenvaluesg’14 and so on.

In this paper, we are interested in the problem of the hydrogen atom in magnetic field mainly
from the point of view of the multidimensional WKB approximation and related problem of the
asymptotic behavior of the corresponding divergent perturbation series. The multidimensional
WKB method is important in many areas of physics ranging from the theory of chemical reactions
to cosmology, for review see Ref. 22. Knowledge of the large-order behavior of the divergent
perturbation series can be used in the summation of the series'**""* and checking correctness of
calculated perturbation energies. The latter application is especially important when treating the
degenerate states where the perturbation theory is difficult to apply.

Schrodinger equation for the hydrogen atom in a constant magnetic field é:(0,0,B) with
fixed nucleus and neglecting the spin effects reads

V:Z 1 BL

+
2 r 2

Bz
S Wy |U=Ey, 8]

where the atomic units are used. The Hamiltonian commutes with the projection of the angular

momentum operator L onto the direction of the magnetic field and with the parity operator. In the
following, we shall restrict ourselves to the states of the zero projection of the angular momentum
onto the z axis and even parity.
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The energy E has the following perturbation expansion:

- B2 n
E=, E<—> ) ()
n=0 8
This perturbation series is divergent. The reason is that the energy E is not an analytic function in
the vicinity of point B=0. This can be understood as follows. We consider analytic continuation of
the energy E for complex magnetic fields E=E(B?). In the upper half of the complex plane we
take B2=|B|e! =) and in the lower half of the complex plane we take B2=|B2|e~i @),
arg(B?) e (0, ). For real magnetic fields, Eq. (1) is solved with the boundary condition ¢A(p
) e B0 here p?=x2+y?. For complex magnetic fields, Eq. (1) is solved with the
analytic continuation of this boundary condition. Now, approaching the value —|B?| from the upper
half of the complex plane leads to the boundary condition ¢(p— o) — e~ IBB10% \hile approach-
ing this value from the lower half of the complex plane leads to the boundary condition #(p
— OO)HE”‘BZ/SWZPZ. These different boundary conditions yield different signs of the imaginary
part of the energy J[E(B?)]. Therefore, the energy E has for real negative values of B? the
discontinuity 2iJ[E(=|B?| +ig)], £ >0. Using Cauchy theorem one can show that the perturbation
energies E, are related to the imaginary part of the energy for the imaginary values of the magnetic

fields via the dispersion relation' >+~

E =

n

dAN——7, (3)

T 0 )\n+1

(= )"™2N)" J © L IEW]

where a new coupling constant \ has been introduced via equation

B_z_)\

8 2N @

Here, N=1,2,3,... denotes the principal quantum number of the hydrogen atom. The imaginary
part of the energy is one-half of the inverse lifetime of the quasistationary states in the potential in
Eq. (1) with the imaginary magnetic field B.

It is seen from Eq. (3) that the behavior of the perturbation energies E, for very large n is
given by the lifetime of the quasistationary states for small values of the coupling constant A.
Thus, provided we are able to calculate this lifetime, Eq. (3) enables precise determination of the
degree of the divergence of the series (2).

Expression for the imaginary part of the energy can be derived as follows. First, since Eq. (1)
has an axial symmetry we introduce the cylindric coordinates x=p cos ¢, y=p sin ¢, z=z. Since
the states with the zero projection of the angular momentum are independent of the coordinate ¢,
Eq. (1) reads

F 1 &
L—pﬁ Ea%* a?}w[vmz)—zm G)
where
2 A
Vip.2) =- P+ ﬁpz- ©

Equation (5) is solved with the boundary condition ¢{(p— 00)—>e‘”‘”2”2/N . Further, we multiply
Eq. (5) by py/". We take complex conjugate of Eq. (5) and multiply it by pi. Then we subtract the
two equations and integrate the resulting equation over the whole space, i.e., over z from — to
and over p from O to oc. Finally, we integrate this equation by parts and obtain the time-
independent version of the continuity equation for the probability density
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J
IE]= 77—, (7)
2l
where the probability flux J in the p direction equals
1 * . * 19 (9 *
J=——| dzlimp| ¢y ——y—o (8)
LJ o p—=* ap ap
and the norm of the wave function reads
<1//|¢>=f dpf dz plyf*. 9)
0 —o0

To calculate the imaginary part of the energy from Eq. (7) we proceed as follows.>* Inside the
potential well, we approximate the wave function by means of the Rayleigh-Schrodinger pertur-
bation theory (RSPT). Since the dominant contribution to the norm of the wave function describ-
ing the quasistationary state comes from the interior of the well we replace the exact wave
function in the denominator of Eq. (7) by the perturbation wave function. In the tunneling region
and outside the potential well we approximate the wave function by the WKB wave function.
Since the dominant contribution to the probability current comes from the tunneling, classically
forbidden region we replace the exact wave function in Eq. (8) by the WKB wave function. The
same normalization of the RSPT and the WKB wave functions is guaranteed by the asymptotic
matching of these functions in the overlap region of their mutual validity.

The main obstacle in carrying out the program described above is the construction of the
WKB wave function. The standard formulation of the WKB approximation as applied to Eq. (5)
leads to the nonseparable nonlinear partial differential equation that is difficult to solve.

The simplification of the problem used here comes out from the fact that the tunneling of the
particle takes place in the neighborhood of the line z=0, see Eq. (5). Consequently, we do not need
to know the wave function in all space, but only in the neighborhood of this line. The situation is
further greatly simplified by the fact that the minimum of the potential is the straight line (compare
it with the case of the curved lines®’**). This simplification was for the first time realized in Ref.
29 for the problem of the coupled oscillators and later used in Ref. 1 to derive the imaginary part
of the energy in Eq. (5) at the leading approximation. However, it seems that the full content of the
simplification was not appreciated so far. Indeed, none from the multidimensional WKB calcula-
tions for the straight escape paths performed so far'*?*3° shows how to extend the calculation
beyond the leading approximation.

In this paper we show how the WKB wave function for Eq. (5) and the outgoing probability
flux can be obtained to the desired accuracy. Our method is not bound to the problem considered
here and with appropriate modifications it can be extended to all problems involving multidimen-
sional tunneling along the straight escape paths.

The paper is organized as follows. In Sec. II the modified multidimensional WKB method is
suggested and used to calculate the outgoing probability flux, Eq. (8), with accuracy to the order
N2 In Sec. III the calculation of the perturbation energies in Eq. (2) is described. The perturba-
tion wave function is used to calculate the norm of the wave function (9). In Sec. IV the results of
the preceding two sections are put together and inserted into Eq. (3) to get the asymptotics of the
perturbation energies. Numerical verification of the derived formula is made and an excellent
agreement between the analytical and numerical calculation is found. In the Conclusions the
perspectives of further applications of the proposed WKB approximation are briefly outlined. In
the Appendix the connection between the suggested and conventional WKB method is discussed.
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Il. WKB METHOD

There are two facts stressed in the next two paragraphs that simplify the calculations enor-
mously and that were not explicitly realized so far. The first one is the approximation of the wave
function in the coordinate z by the wave function of the anharmonic oscillator, Eq. (11). The
second one is the scaling in the coordinate p, Eq. (15).

A. Approximation of the wave function in the transversal direction

First, in the vicinity of the p axis the potential V(p,z) given by Eq. (6) can be expanded as

V(p,2) = Volp) + Va(p)Z2 + Vy(p)z* + -+ . (10)

Then, the wave function of the particle in the direction transversal to tunneling can be written as

Wp,2) = ef(p)+h(P)zz+q(p)z4+_ - .

Physically, this says nothing else than close to the minimum of the potential in the direction
perpendicular to tunneling we can approximate the exact wave function by the wave function of
the harmonic oscillator. This approximation can be further improved by considering anharmonic

terms.
Inserting the expansions (10) and (11) into Eq. (5) and comparing the terms of the same order
of z we get
, ' (p) A 2
f(p)+f"(p) +——+2h(p)=-2E—- —p* - = (12)
p N p
at the zeroth order,
(AR p h'(p) 1
2f"(p)h' (p) + h"(p) + +4h(p)* + 12q(p) = pe (13)
at the second order and
q'(p)

21 (p)g' (p) + 1 (p)* +q"(p) + +16h(p)g(p) = (14)

_E

at the fourth order of z. Here, the prime denotes the differentiation with respect to p.

B. Approximation of the wave function in the longitudinal direction

Second, in the direction of the tunneling we approximate the wave function as follows. In the
classically forbidden region the terms —2E, and —(\/N?)p? are of the same order of magnitude.31
To make these terms of the same order in A we make the scaling in the coordinate p,

p=N"u, (15)

and expand the real part of the energy in the series (2). Equations (12)—(14) then read

) : fr( ) 1= 2 2)\1/2 A\
)\(f (u)2+f(u)+7u)+2h=T2u— - —22En<—2—]\ﬂ) , (16)
! 3/2
)\(Zf'(u)h’(u) )4 (”)) + 4h(u)? + 129(u) = )‘—3 (17)
u u

and

Downloaded 22 May 2006 to 195.113.33.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



022106-5 Large-order behavior of the perturbation energies J. Math. Phys. 47, 022106 (2006)

52

4y’

q'(u)
u

)x(Zf’(u)q'(u)+h'(u)2+q”(u)+ ) + 16h(u)g(u) = - (18)
where the prime denotes now differentiation with respect to u. To get a clue how to expand the
functions f(u), h(u), and g(u) in the powers of X' we use the fact that for u— 0 we must recover

the wave function of the hydrogen atom. For example, it reads for the ground state

Y = e = VP2 — P28+ — pmuN PN 20N S (19)
Therefore we expand the functions f(u), h(u), and g(u) as follows:

fo(u)

flw) ="+ iw) S 210)) SEE SR (20)
h(u) = ho(u)N"? + hy(WN + -+, (21

and
q(w) = go)\*? + -+ . (22)

C. Equations for the WKB wave function

Comparing the terms of the order \” in Eq. (16), of the order \ in Eq. (17) and of the order
A2 in Eq. (16) we get equations for the functions fo(u), hy(u), and f,(u),

+1 —u?
folu) = N (23)
2foh(u) + 4[hyw) P =0 (24)
and
1 2
2fo(w)f1(u) + fo(u) + ;f(')(u) +2hy(u) = - o (25)

respectively. Since we want to calculate the imaginary part of the energy beyond the leading
approximation, we have to determine also the functions go(u), #;(«), and f>(u). Comparing the
terms of the order \? in Eq. (18), of the order \*? in Eq. (17) and of the order \ in Eq. (16) we
get equations for the functions go(u), i, (u), and f>(u),

2fo(u)qo(u) + [ho(u) T + 16ho(u)go(u) =0, (26)
1 1
2f o)y () + 21 ()b (u) + hig(u) + ;hé(u) +8ho(u)hy (1) + 12q0(u) = I (27)
and
’ ’ ’ 2 i 1 ’ El
2fo(w)f3(u) + L1 )] + fi(u) + ;fl(u) +2hy(u) = N (28)

respectively. The solution of the above equations is determined uniquely by requirement that for u
going to zero, the WKB wave function must match the bound state function. This will be dis-
cussed in detail below. Before actual solution of the equations given above, let us show that the
proposed approximation to the wave function yields systematic approximation to the outgoing
probability flux.
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D. Approximation to the outgoing probability flux

To calculate the outgoing probability flux from Eq. (8) we need to know the behavior of the
wave function for large p. Integration of Eq. (25) yields

f1() == 5 In(ufy(w) + Fy(u), (29)

where the second term is given as

- NT
Fi(u)=- %, In % + 2 In(hy(u)) —A,. (30)

The integration constant A is determined from the requirement of the matching of the WKB and
bound state functions. Here, we took the solution of Eq. (23) with the minus sign, see discussion
after Eq. (37) below.

Thus, the behavior of the wave function (11) for large p is given as

_ expUfo( @+ Filp) + N 2fo(p) + - + h(p)2 + q(p)z + -}
Lofo(p)]'"

where we inserted the expansion (20). Differentiation of the function (31) with respect to p yields

Hp.2) , (31)

/ 172
a"’;’;’Z) - DE(;({’])I]Q exp{fﬁfff +F1(p) + N halp) + +h(p)7 + glp)zt+ } (32)

Differentiation of the terms F,(p), A'"?'f,(p) and so on yields the contribution to the probability
flux that vanishes for p approaching infinity. For large p the particle moves in the classically
allowed region and f{(p) is purely imaginary, see Eq. (23). Thus it follows from Egs. (8), (31), and
(32) that the nonvanishing contribution to the probability flux for p going to infinity is given as 30

1
J =17 exp2Rfolu — 0 )N 4 Fy(u— )+ N2fy(u— )+ - ]}

X J dz exp{22?RIN2ho(u — ) + Nhy(u — )]+ 22" RN q0(u — <))+ -},

(33)

where PR denotes the real part. Here we inserted the expansions (21) and (22) and made the
substitution (15). This can be done since the real parts of the functions f;(u), h;(u) and so on, goes
to the constants for u going to infinity. Therefore, it does not matter if we calculate it in the
variable u or p.

The integration over the transversal direction can be performed easily. Expanding the above
equation in the powers of \'/? as

J= ﬁ exp{ZfR[fo(u — )/)\1/2 +F(u— o)1+ 2)\1/2m|—f2(u o)t o)

X f ’ dz exp{22°RIN"?ho(u — ) M1+ 2220R[ 7 (u — ©)] + 22 NR[go(u — © )]+ -+*)

(34)

we are left with the Gaussian integrals. The outgoing probability flux accurate up to the first order
of \!2 then reads
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—
VT
J=exp2R[fo(u — )N+ Fj(u— = )]})\3/4(9{[_ TP )])1,2(1 +A2R ARy + 1),

(35)

where the first correction coefficient R, equals

Rlhi(u— »)] N 3R[go(u — *)]
R[-2ho(u — )] 2(R[=2ho(u — *)])*’

R =2R[fo(u — »)]+ (36)

It is clear from the above equations that the suggested approximation of the wave function
provides systematic approximation to the outgoing probability flux in the form of the series in
powers of \!/2. It is well known that the WKB approximation fails in the vicinity of the turning
point corresponding here to u=1, see Eq. (23). There is a number of papers dealing with the
approximation of the wave function in the neighborhood of the turning points, see, e.g., Refs.
32-36. It is clear from the above equations that what we actually need is the behavior of the WKB
approximation for u going to infinity. The proper normalization of the WKB wave function is
guaranteed by matching it to the bound state function for u going to zero. In this region the WKB
wave function is valid as an asymptotic expansion. Therefore, we do not have to care at all about
the divergence of the WKB approximation at the turning point, see also Ref. 31.

E. Solution of equations
1. Boundary conditions

As becomes apparent during the calculation it is possible and advantageous to normalize the
bound state wave function in such a way that it behaves in the overlap region as

Ccz?
l/fo(P — w7 — O) ~ e—p/N_ZZ/(ZNp)—z4/(8Np3)—...pN—1<1 + 7 +oeen ), (37)

where C is a constant depending on the form of the bound state wave function and it will be
precisely determined in Sec. III. It is seen from Eq. (19) that for the ground state

C1,=0. (38)

The solution of Egs. (23)—(28) is determined uniquely by the requirement that the WKB wave
function has this behavior for small u.

2. Calculation of the first approximation

Since for u>1 the integrand in Eq. (23) is purely imaginary we can stop the integration at the
turning point u=1. We start the integration at the point #=0 and take the minus sign in Eq. (23)
to get the first term in the argument of exponential function on the right-hand side of Eq. (37) for

small u
1 f 2
V1I—u T
R ©)f==14d =—— 39
Ul — )] fo = (39)
Equation (24) is nonlinear first order differential equation whose solution reads

o) 1 (40)

U)y=——""",

0 2N arcsin u

where the integration constant was set to zero to get the second term in the argument of exponen-
tial function on the right-hand side of Eq. (37) for small u. We note that for u> 1, the function
arcsin(u) is complex and two-valued with the branch point at u=1,
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arcsin(u) = g +iln(u+\u"-1). (41)

These two values correspond to the incoming (+) and outgoing () waves. Taking the solution
with the minus sign we get

Rl — )] = hofu= 1) === 42)

For u going to zero the function f;(u) given by Eq. (29) behaves as

2N+1 2N+1 N-1
Filu—0) — - 2+ (N = Din() =A== === In2+ == Ink+ (N~ Dinp-4,,
(43)
where we substituted for u from Eq. (15). To get the leading power term in Eq. (37) we obviously
must set
2N+1 N-1
A=- 5 In2+ 2 InA. (44)

Using Egs. (40) and (41) in Eq. (30) we get

1 1 N-1 2N+ 1
,‘R[Fl(u—>OC)]=—5111N’7T—A1=—5111N7T— 3 In\ + 5 In2. (45)

Now we are ready to calculate the outgoing probability flux at the leading order of A'"? from
Eq. (35). By inserting Egs. (39), (42), and (45) into Eq. (35) we obtain

22N+1

__c  —mem? 12, ...
_)\N—1/4(2N)1/26 ( (A+RNZ+ 00, (46)

J

3. Calculation of the second approximation

To calculate the coefficient R, we must determine the functions gq(u), #;(«), and f>(u).
Equation (26) is inhomogenous linear differential equation for g(u). We first solve the ho-
mogenous part and then use the variation of a constant. We obtain the function gq(u) as

qo(u) = [ho(u)]4Qo(M) > (47)
where
2u
Qo(u) =N TS (48)

The integration constant was set to zero to get the third term in the argument of the exponential
function on the right-hand side of Eq. (37). By virtue of Eqgs. (42) and (48) the real part of the
function g (u) vanishes for u going to infinity

Rlgo(u — *)]=R[Qy(u — *)]=0. (49)

The function %,(u) is obtained similarly as the function gq(u),

hy () = [ho(u) PH, (), (50)
where for the function H,(u) we obtain using Egs. (24), (25), (47), (48) and integrating by parts
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2 1 !
[fo(w) T ’ 2u3f6(u)[ho(u)]2 [fou )]2> ‘

Inserting now the explicit form of the functions f{(«) and h(u), Eqs. (23) and (40), the integration
of the last equation yields

Hi(u) =

<3Qo(u)ho(u) + (51

1 1 —ud)i2 .
H () =300(u)hy(u) + ———= [fo( 7 n 2N3[ 7 + ( 232) arcsin®(u) + arcsin(u)
u )
_JO [E;IicilrtlZ)(lt/)Zdt] _AZ- (52)

To determine the integration constant A, we note that for u going to zero we get from Egs. (48),
(50), and (52),

My(u— 0) = —=—5 (5N =2N? = A,) = —5—5(5N° = 2N? - A,), (53)

()2

where we substituted for u from Eq. (15). To get the last term on the right-hand side of Eq. (37),
we obviously must set

A
(2N)*u

5N-2
A2=4N2( 1 —c). (54)

The real part of the asymptotics of the function /;(u) is by virtue of Egs. (42) and (48) given as

u 2
R, (1 — )] = holu = DR[H, (1 — )] = ho(u = 1){—A2—2N39%U0 %dt]}.

(11—t
(55)
Finally, the integration of Eq. (28) is substantially simplified by the identity
=)+ 50
2f0(“) Zfo(u) 2[f0(”)]

We note that this identity substantially simplifies the calculation of the higher orders of the WKB
approximation in general. Further, it is useful to separate the part of f,(u) denoted as F,(u) that
depends on the function /,(u) and the part denoted as ¢,(u) that is independent of it,

fou) = F(u) + ¢y (u). (57)
The function ¢,(u) is integrated easily without any tricks. The real part of its asymptotics is given
as
R 0 )|= 58
[¢o(u — )] = 4 N (58)

For the part F»(u) we find using Egs. (24), (25), and (51) and integrating by parts

! (H ()ho(u) 3Qo(“)h°(u)2)/. (59)

W whe) N 2 4
0 0

The real part of the asymptotics of the function F,(u) is by virtue of Egs. (23), (40), and (48) given
as

Fy(u) =~
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H 0 N2 1- 2\1/2 : 1
RIFo(t — )] = holu = =) ; ), lim—{ (1-) Zamm(”) 4=
U—0 u u

u d :
o sres])

By inserting Egs. (49), (54), (55), (57), (58), and (60) into Eq. (36) we obtain

Eim Ay, N2 arcsinz(u) — ar arcsin(u) E,m 2N(5N-2 ,7£(3)
R=—— T 22 T u=— T 2R o) o
2N 2N7T 27 u(l —u) 2N & 4 4
(61)

where {(z) denotes Riemann zeta function. The first order perturbation energy E, as well as the
constant C will be determined in the next section.

lll. PERTURBATION METHOD

To calculate the norm of the wave function in Eq. (9) accurate up to the first order in N!/? it is
sufficient to take the wave function of the unperturbed hydrogen atom. For the excited states, the
unperturbed wave function is degenerate and we must use the first order perturbation theory to
determine the correct linear combination of the unperturbed functions. Since we need to calculate
the perturbation energies up to the large order for numerical verification of the analytic formulas
we describe the application of the perturbation method to Eq. (1) in greater detail.

The method described here is an extension of the method suggested in Ref. 29 for the coupled
oscillators. The alternative way of calculation of the perturbation energies for the problem con-
sidered here is described for example in Ref. 10 for the ground state energy and in Refs. 8§ and 37
for the excited states.

A. Derivation of difference equations

We transform Eq. (1) into the spherical coordinates, x=r sin 6 cos ¢, y=r sin fsin ¢ and z
=rcos 6, multiply it by r, write the wave function in the form

2\ k
Yr,0) =" @(r, 0)(%) ; (62)
k=0

insert the expansion (2) for the energy and compare the terms of the same order of (B%/8).
Equation (1) then reads

P[# 20 1fcosoo #\| ra 1-N ‘
- _+__+ﬁ -+ — + —— +— gok+r Slrl Hgokl—rEElng,

2L ar*  ror sin 096 96 Ndor N =
(63)
Further, we expand the perturbation functions ¢, in the form of the double series
= g(k)r’ sin% (64)

i=0 j=0

where the upper bounds of the summations will be determined later, insert it into Eq. (63) and
compare the terms of the same order of r and sin” 6. As a result we get the difference equations for

the coefficients g;?,
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! .\ iy : i+1-N . .
= &AL+ DG +2) =2+ DI =26+ 1%y + — gl + &5l = 2 Bl
=1

(65)

These equations can be used for the calculation of the perturbation energies as follows. The
calculation for the ground state is not difficult and does not differ from that described in Refs. 2
and 29. In the first order of the perturbation theory we get

Ef=2. (66)
For the excited states, the situation is a bit more complicated because the unperturbed state is

degenerate. We describe calculation of the perturbation energies for the 3s-3d state in detail.

B. Solution of equations for the 3s-3d state

The unperturbed wave function of the 3s-3d state reads

Ps3q=Ss+ disg, (67)

where s and d denotes the coefficients of the linear combination and the unperturbed wave
functions of 3s and 3d states read

2r 2r2>
= —rl3 1—— 4+ — 68
'//33 e ( 3 + 27 ( )
and
Yng=e""r*(1 =3 cos? 6), (69)

respectively. Thus, we set géo())—s g(lo())— 2s/3, g(o) (2s/27)-2d, g —3d and g 9-0 otherwise.
We express the third term in Eq. (65), gl( ) set gf 1e2=0, g3k)+gj—0 and solve Eq. (65) with N=3 for
k starting from 1. For given k we solve Eq. (65) for J descending from k+1 to O and for i
descending from 3k+2 to 3. For i=2 the third term in Eq. (65) vanishes. Therefore for i=2 we
solve Eq. (65) for j descending from & to 1 to get equations for the coefficients g2 - For i=2 and
j=0 we get the equatlon for the perturbation energies E,. Finally, for i descending from 1 to 0 we
again express g( and solve Egs. (65) for j descending from k+1 to 0. The perturbation coeffi-
cients calculated in this way agree with those given in Ref. 8.

For the sake of transparency we illustrate this procedure of solving Egs. (65) for i=2 on the
first two orders of the perturbation theory. In the first order, k=1, we get for j=1,

30s + (1620 = 27E,)d =0 (70)
and for j=0
(72-2E,/3)s + 18E,d = 0. (71)
From Eq. (70) we get
10s
=—. 72
9(E, - 60) 72)

By inserting this value into Eq. (71) we obtain a quadratic equation for E;. Two roots of this
equation equal

(E}39),,=99 £ 9\41. (73)

In the second order of the perturbation theory, k=2, we get for j=2,
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g4} =0, (74)
for j=1,
766 908s + 15 549 570d — (56165 + 167 670d) E; + 1701/2E7d — 405g5) + (9E, - 810)g3')
+27E,d=0 (75)

and finally for j=0,

1308 7985 + 1 296 45364 — (14 3105 + 29 160d)E, + (575 - 567d)E} + (9E; — 972)g}) — 648g5!)
+(25/3 - 18d)E, = 0. (76)

We solve Eq. (75) to get the coefﬁ01ent g and insert it into Eq. (76) to get E,. We note that the
values of the coefficients s and g2 o are not glven by the perturbation theory. We also note that Eq.
(76) for E, is linear. It means that after splitting of the degenerate energy level at the first order,
there is only one solution for given E; for higher order perturbation energies E,, E3, and so on.

Since the coefficient s is not given by the perturbation theory, it can be used to normalize the
bound state function to behave as in Eq. (37) for large p and small z. The function (67) behaves in
this region as

2s 2s
 ,=pI3=2%(6p) 2 Zrd+ = (——2d>+~" . 77
Y3530~ € p {27 77 (77)
It is seen that to get required behavior (37) we must set
2
2 hd=1 (78)
27
and that the constant C in Eq. (37) equals
Cis30= 2 2d (79)
3534 = oy .

C. Solution of equations for the state 5s-5d-5g

Only slight modifications of the above procedure are necessary for the 5s-5d-5g state. The
unperturbed wave function in this case equals

Uss-5d.50 = Ss + dihsy + gihs,, (80)

where the wave functions of the 5s, 5d, and S5g states read

" _r/5<1 4r 477 4r 274 ) 81)
= -+ — -
5= 5 725 7375 T 9375
2 2

sy = e-’/5r2(1 - 1—; + é)(l ~3cos 0) (82)

and
—rl5.4 2 35 4

s, =e""r"( 1 =10 cos 0+?COS 0], (83)

respectively.

In the first order of the perturbation theory we get from Egs. (65) the following three energies:
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(ESX—Sd—Sg)l 53=550,775+25 \“”4—81. (84)
1 22,

Further we get the expression for the coefficients d and g,

_ 25(7E, - 2850)
= (E; = 300)(E, - 750) (85)

and

12s

= . 86
&= 7(E, - 300)(E, - 750) (86)
To get required behavior (37) we set
2s 2d 1 87)
+—+g=
9375 ' 525 " %
and the constant C equals
c _ s 24 g (88)
5345 = 9375 " 505 7 08
D. Calculation of the norm of the wave function
The norm of the function (19) is calculated from Eq. (9):
(Wl i) =f drf dér sin 6|y > =172, (89)
0 0

where we made change of the variables p=r sin @ and z=r cos 6. Further, the norm of the wave
functions (67) and (80) equals

2

(Uny3dl 300 = 19 683d° + 2% (90)
and
1255 390 625d*
(s50.50 Wss 50.50) = > + p +136 718 750 000>, 91)
respectively.

IV. LARGE-ORDER BEHAVIOR OF THE PERTURBATION SERIES
By inserting Eq. (46) into Eq. (7) and the latter equation into Eq. (3) we obtain the large-order

behavior of the perturbation energies,

Rl7T
E,=E[1+

ARl (92)
2N(2n+2N—5>

where the leading term of the large-order behavior reads
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TABLE I. Comparison of the numerical and analytical values of the coef-
ficient R;. See the text after Eq. (94) for details.

State E, R,, Eq. (94) R,, Eq. (61)
1s 2 o -3.333724 367368 66 —3.333724 367 368 65
35-3d 99+9v41 —82.969 565 723 945 —82.969 565 723 942
35-3d 99-941 -47.079 674 497 78 -47.079 674 497 77
5s-5d-5g 550 —273.083 854 65 —273.083 854 64
5s-5d-5g  775+25V481 -417.562 256 273 —417.562 256 272
5s-5d-5¢ 775-25 \5481 -212.681 342928 -212.681 342920
24NN2N—1 23/2N2 n 1
B = ——————— (= 1)"! I 2n+2N-—]. (93)
n 772N+l/2< ¢| ¢> ar 2

Here, the norm of the wave function (| ) is given by Eqs. (89)—(91) for 1s, 3s-3d, and 5s-5d
-5g states, respectively. The coefficients s and d in Eq. (90) are given by Egs. (72) and (78),
respectively. The coefficients s, d, and g in Eq. (91) are given by Eqgs. (85)—(87), respectively.

The coefficient R; in Eq. (92) is given by Eq. (61). The first order perturbation energies in this
equation are given by Egs. (66), (73), and (84) for 1s, 3s-3d, and 5s-5d-5g states, respectively.
The constant C in Eq. (61) is given by Egs. (38), (79), and (88) for 1s, 35-3d, and 5s-5d-5g states,
respectively.

Formula (93) for N=1 and N=3 was for the first time given in Ref. 1 and for N=1 rederived
in Refs. 3 and 4. The first correction (61) is given here for the first time. To check its correctness
we calculated numerically

. 2N(2n+2N—%>
R, = (—"- 1) , (94)

asy
E, ™

where E,, are the exact perturbation energies calculated from Egs. (65) by means of the language
MAPLE and E;Y is the leading term of the large-order behavior given by Eq. (93). For s state we
calculated first 80 perturbation coefficients in the rational form. Numerical values in Eq. (94) were
extrapolated by means of the Thiele-Padé extrapolation from the interval n=70-80 to infinity. For
3s-3d and 5s-5d-5g states we calculated first 100 coefficients in 200 digits accuracy for both
energies in Eq. (73) and all three energies in Eq. (84). Numerical values were extrapolated from
the interval n=90-100 to infinity. The extrapolated values are compared with the values given by
Eq. (61) in Table I. Agreement between numerical and WKB results is excellent and confirms
soundness of both the perturbation and WKB methods suggested in this paper.

V. CONCLUSIONS

In this paper the large-order behavior of the perturbation series for the energy of the hydrogen
atom in the magnetic field was derived by means of the modified WKB approximation. The
asymptotic formula derived by Avron in Ref. 1 was generalized to describe the states of higher
than twofold degeneracies. On the other hand, we restricted ourselves to the states of zero pro-
jection of the angular momentum and even parity, while in Ref. 1 this restriction was not done.
The first correction to the asymptotic formula was given here for the first time. The analytic results
were compared with numerical ones and an excellent agreement between the two was found. The
calculation of further terms in the expansions (35) and (92), though straightforward in principle, is
very tedious. We note that in this case we must take also the correction to the norm of the wave
function.”**!*3** On the basis of the experience with one-dimensional plroblem333’34 we expect
that the series (35) and (92) are only asymptotic, i.e., hold for sufficiently small A and large n only.
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The most immediate further application of the WKB method suggested in this paper is the
calculation of the ionization rate of the atoms in the weak electric field. The standard calculation
of this rate for the many-electron atoms is based on the calculation for the hydrogen atom.”® The
latter is based on the separability of the Schrodinger equation in the parabolic coordinates.*>>3%%
However, the separation of the Schrodinger equation for the motion of the electron in the binding
potential and applied electric field holds only in the case of a purely Coulombic binding potential.
Arbitrarily small perturbation from the other electrons destroys the separability of Schrodinger
equation. Even for the hydrogen atom, the separability is lost once the relativistic effects are
considered. Only slight modifications of the procedure described here are necessary to derive the
ionization rate of the hydrogen atom in the weak electric field without invoking the separability of
the Schrodinger equation.

Finally, we note that the WKB approximation suggested here is not bound to the problem of
the calculation of the lifetime of quasistationary states. It is a local approximation of the wave
function and it can be used, for example, to describe motion of the bound electron in the intense
laser field or to estimate forward scattering amplitude for the elastic scattering of the electrons on
the atoms.
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APPENDIX

In this Appendix we discuss the relation between the WKB method suggested in Sec. II and
the usual semiclassical approximation.
Let us consider the Schrodinger equation where we included the reduced Planck constant 7,

PP
hz[ﬁ—pz+a—zz}w=[V(p,z)—E]w, (A1)

and let us assume that the potential behaves in the vicinity of p axis as in Eq. (10). Then we can
write the wave function of the particle in the vicinity of p axis in the form of Eq. (11). In general
case there is no parameter N associated with the external field driving the particle out of the
potential well. Nevertheless, by the scaling

z=hn (A2)

the WKB approximation, very similar to that suggested for Eq. (5), can be obtained. Physically,
the scaling (A2) implies that while the longitudinal motion is treated semiclassicaly, the transver-
sal motion is treated in fully quantum manner. Proceeding then in accordance with the consider-
ations leading to Eq. (35), it can be shown that the expansion of Eq. (A1) in the powers of 7 and
f provides systematic approximations to the probability flux in the p direction in form of the series
in the reduced Planck constant 7.
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