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In this paper we extend the method for numerically stable calculation of the atomic
integrals suggested in our previous paper for $rstates of two-electron atoms to

the states with arbitrary total angular momenta. The extension consists in finding
numerically stable forms of the solution of difference equations appearing in the
calculation of the radial part of the atomic integrals. These equations become for
some value of the independent variable homogenous and their solution in that
region is described by one of the two linearly independent solutions. Modification
of the method of the variation of constants for this special type of linear second
order inhomogenous difference equations is suggested and appli@D0®
American Institute of Physic$DOI: 10.1063/1.1849811

I. INTRODUCTION

This work grew out from the search for a numerically stable method of the solution of linear
inhomogenous second order difference equations appearing in the calculation of the radial part of
the atomic integralé.GeneraIIy, once we know one of the two linearly independent solutions of
the homogenous equation, the second solution can be obtained by the method of the reduction of
order? The solution of the inhomogenous equation is then obtained by the method of the variation
of constant$. However, it turns out that for the difference equations appearing in the calculation
of the atomic integrals this general well-known procedure is of little use in its standard form. The
reason is that these difference equations become for certain values of the independent variable
homogenous and their solution in that region is described by one of the two linearly independent
solutions. This behavior results from the general formula by several cancellations of large num-
bers. If these cancellations are left on the computer working, for example, in double precision
arithmetics, totally wrong results are obtained.

Therefore, a general method for obtaining a numerically stable solution of this type of differ-
ence equation is given in this paper. The method is applied to the special case of difference
equations appearing in the calculation of the radial part of the atomic integrals. Thus, the method
suggested in our previous paper for thstates of the two-electron atoms is extended here to the
states with arbitrary total angular momenta. Since in general there are at most two-electron inter-
actions, these results can be extended to all atoms and more generally to all one-center integrals.

The paper is organized as follows. In Sec. Il we briefly summarize the calculation of the
atomic integrals via the multipole expansion of Coulomb potential. Here, we proceed along the
lines of our previous papérAfter integrating out angular degrees of freedom, we use analog of
the Wigner—Eckart theorem for the radial functions. This reduces the integration over four radial
functions to the integration over two radial functions. Then we write down a generalization of the
difference equations for the reduced radial integrals derived in Ref. 1 f@-#tates to the states
of arbitrary total angular momenta of the electrons. The main difference is the fact that for the
states of the nonzero total angular momentum the difference equations are inhomogenous. In Sec.
[Il we discuss solutions of these equations. We present results of numerical experiments that show
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that the difference equations are in a region where they are homogenous described by just one of
the two linearly independent solutions. In Sec. IV we first briefly summarize general methods of
the reduction of order and the variation of constants. We modify the method of the variation of
constants for the cases when the second of the two linearly independent solutions of homogenous
equations is obtained by the method of the reduction of order. The form proposed by us is more
suitable for computational purposes. We then turn our attention to the special type of equations
appearing in the calculation of the atomic integrals and derive numerically stable forms of their
solution. In Sec. V we apply the general method of Sec. IV to the difference equations for the
reduced radial integrals and test it for the case of very large quantum numbers. In Sec. VI, a
summary of the achieved results and perspectives of their further applications are given. In the
Appendix computationally suitable forms of the hypergeometric functions needed in Secs. Il and
[l are given.

Il. CALCULATION OF THE ATOMIC INTEGRALS

In this section we derive the difference equations for the reduced radial part of the atomic
integrals. The derivation of these equations was given in great detail in Ref. 1 f&rstfages of
two-electron atoms. What is difficult in the extension of the method described in Ref. 1 for the
S-states to the general state is thelution of these difference equations, not their derivation.
Therefore, we shall proceed very briefly.

We search for the exact two-electron wave function by the expansion into the symmetry
adapted products of the one-electron wave functions

[i) =27 Antmand AR, | ()R (F) (i L) £ Ry 1 (F)Ry 1 ()| (i i) (1)

Here, the statefl,,l,)L) are the eigenfunctions of the square and the third component of the sum
of the angular momenta of two electrons

Iy

(1L = 2 (Ig,myly,

my=-ly

my)P|15,M - my)@, (2

where (|) denotes Clebsch—-Gordan coefficients. Their explicit form is given, for example, in
Refs. 3-5. The radial functionR,, are eigenfuctions of one of the generators of th&dp
algebra and will be described in greater detail later.

A. Multipole expansion

The matrix elements of the Coulomb interaction, i.e., repulsion integrals, are calculated by
means of the multipole expansion of the opera{ér

12—_2(r<> Pi(ny . Ay, ©)

> =0

where r_=min(r,,r,) andr-=maxr,,r,), P(x) denotes the Legendre polynomials. With the
usual definition of the inner produéto avoid confusion we note that the inner product used in
Ref. 1 differs from the usual one by the factor*) and multipole expansiofi3) the matrix
elements of the operatof; between the stated) can be written as

min(lig+;q.ligHj2)
x'|1 ||2 '11 '12'

1 +6, )2
On 0l n: A
<||r12|]> 2 i1'h2 lirriz2 j1r 12 j1'j2 12| |1 |2 ]1 12

O

i1z jll

I=max(|lj;=ljl.liz=j2))
min(li1+lj2,ljl+li2)
lizliodioliq,l
+ 6 Xll 2 12 ]l
> linlizlj2l gm0y,

(4)

I=max(|ljy~ljal.[lj1-lj2])

wherel in the summation increases by 2.
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The angular parﬂ,ilJinle_z,, corresponds to the matrix elements of the Legendre polynomials
P,(A;.nA,) between the coupled stated),

Oy ol = ((ipliL|Py(Ay . Ap)| (11, 1j2)L)

V@2l + D2+ D2l + D2 + 1)
21+1

Ivo)(|i2101|j210||10)1 (5)

whereW(a,b,c,d;e,f) are the so-called Racah coefficients and their explicit form is given, for
example, in Refs. 4 and 5. The Clebch-Gordan coefficiémt8,b,0|c,0) are zero unless, b,
andc satisfy the triangle inequalitia—b| <c<a+b anda+b+c is even. This reduces the infinite
sum in Eq.(3) to the finite number of terms in E¢4).

The radial part of the integration reads

= (= 1)H itz 2

XW(lig, i1 li21j2,1, L) (1, 0,151, 0

Nz Mi2Nj1Nj2

o] 2] I
ol r
Xivhi2ljalz! :jo drlJO drzriranilJil(rl)Rniz,liz(l’z)Ifanjl,ljl(rl)anz,ljz(rz)

:j dry Rnil,lil(rl)anl,ljl(rl)r|1+2J dra Ry, (r2)Rn 1 (rr;**
0

1

+f dry Rnil,|i1(r1)an1,|jl(r1)rIHlf dr, Rniz,liz(rZ)anz,ljz(rZ)rI2+2- (6)
0

0

B. Reduction of the radial integrals

Using the analog of the Wigner—Eckart theorem fai2sh) algebrd we can write the integrals
over four radial functions as a linear combination of the integrals over two radial functions

Nia+Nj1=lis=lj2=2 Niz+njo—lizlj2=2
lLiglindiglin -2 alitl lin,li liquli lio,li
X|1'|2'le121 :2 AIl’Jl A|2'12 cil'j1l C|2v12
Ni1Ni2:Nj1.Nj2 NN MizNj2 2 Ni1:Nj1.q Z MNi2:Nj2:N2
n=-1 ny=-1
% Q|i1+|j1v|i2+|j2r| (7)

Pt UL Pasl PPy

where the multiplicative factoA'r;i'fgj equals

Ah.’!#_}:Zl'ni'”i(ni+nj—|i—|j—2)!(ni+|i+nj+|j)! (ni_li_l)! (nj_lj_l)' (8)
" (ni_li_l)!(nj_lj_l)! (ni+|i)! (nJ+IJ)|

The coefficientsc|i'j, , of the linear combination read
i1

il = il _(ni+nj—|i—lj—2—n)c|i,|j (9)
ni,nj,n ni,nj,n (ni + nj + |i + I] -n- 1) ni,nj,n+1y

where the coefficient€li'j . are given as
W,

_FCE=nmi+li+1,-n-ni=nj+ L+ 1+ 2, 2F(-n = 1,-n;—-n—n
i (N + 1 +n+1;=n=1)n!

-1,-1:2)

i i (10)

Il
Cih
for n=0 and equal zero otherwise. Hef\a, B; v; z) denotes the hypergeometric functi(see,

e.g., Refs. 6-B We note that Eq(43) in Ref. 1 is incorrect.

\Ui denotes the integrals over two radial functions
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Lol — A+ Lol | A—Lp,Lo,l
Qi = Quk, > + QN K, - (11)
Here,
Q+ n L2 J dr1~RN1,L1(2r1)r|1+lf drzﬁNz,Lz(Zrz)rE' (12
0 rq
and
Oytule! = wdr Ry L (2r)r] rldr Ry L(2r)rst (13
NN, et LA P

WhereﬁN’L(r) differs from Ry, (r) by the normalization factor

Ruu( =2y S 2 R0, (1)

We note that due to the selection rules for the Clebsch—Gordan coefficients mentioned earlier
the differencdlL,-L,| is always even. Moreover, the sum+L,+| must be even as well.

C. Difference equations for the reduced integrals

Proceeding in complete analogy with the considerations made in Ref. 1 we obtain the follow-
ing difference equations for the integraflﬁ,t,ﬂ;z",

(N2 = LQUARE — (N2 + L)QUiAR - 2Q0 k" =~ piie (15)
and
(N = L)QRAR! = (N + L)QEIAiR! + 20 + DOJ KL = Pt (16)

The values oKNQK,'lL’ﬁzLZ' are obtained from the relation

6':1,Lll\l,L2,l - 'Q-i’\-l,LZN,Ll,I. 17

1772 2771

Here, the right-hand side of equatiopﬁl"','f2 equals

PRERE = f dr r2Ry_ 1 (2)Ru,,(2r). (18)
0

Using the explicit form of the radial functioris,

Ry, (r) = 2% (2r)'L252 (2r), (19)

and the expression for the generalized Laguerre polynor(sals, e.g., Refs. 638

1 K
Lg(r) = Ze r “drK(e‘rrK”‘), (20)

we obtain forL;>L,+1 integrating by partésee, e.g., Ref.)5
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min(Ny=Lq~1,Np-Lp=1)

Lily — M E (- PNaLo-1g
N1 N 2 _
g=max0,N,-L,-2)
N,-L,—-q-3\/L;+L,+2+ Li-L,+1
X(l 2—( )(1 2 Q)< 1~ Lo ) (1)
Ll_L2_2 L1+L2+2 NZ_LZ_l_q
for N,=<N;+1 and
Prisg =0 (22)

otherwise. The values qul "2 for L,>L,+1 are obtained from the obvious symme
=pR2KL, see Eq(18).
Using difference equationd5) and(16) the integrals are reduced to the integrals over node-
less functions that can be calculated analytichlly,

2

QLA =2 L+ L+ DIF(L Lo+ li- Ly~ Lo = 152), 29

The difference equationd5) and (16) were programmed iMAPLE in form of the recursive
algorithm and solved both in rational and 16 digit arithmetics. From these numerical experiments
we found that for large quantum numbexg, N,, L;, and L, numerical instabilities appear.
Moreover, after some time the recursive algorithm took so much computer memory that further
computation was not feasible.

Therefore, we search for the explicit solution of E¢$5) and (16). This is done in the
following section.

IIl. SOLUTION OF DIFFERENCE EQUATIONS

In this section we discuss the explicit solution of E{4%) and(16). We argue that the method
of variation of constants cannot be used in its standard form and discuss the result of our numeri-
cal experiments. These experiments show that Bds.and(16) are in the region where they are
homogenous described by just one of the two linearly independent solutions.

A. The extension of the method given in Ref. 1

In our previous papérwe solved Egs(15) and (16) for the S-states. It follows from the
properties of the Clebsch—Gordan coefficients that we must consider the onlicasg=L. In
such a case the S|tuat|on is simplified by virtue of the fact that the right- hanqbb}qle vanishes
wheneverN; —N,| > 1. ! That means that Eq$15) and(16) are for most of the valueNl andN,
homogenous. Therefore, it was sufficient to find two linearly independent solyfiomsamental
system of homogenous equatiori$5) and(16) for | <L. The two linearly independent solutions
of homogenous equatiaid5) are

an, = (= DN IR (N, = Ly, — Ly + 1= 2L5;2) (24)
and
by, = F(Nz = Lo, = L= 15-2L5;2). (25)
The two linearly independent solutions of the homogenous equéti®rare

ay, =F(N; - Ly —1,-Ly+1+1;-2,;2) (26)

and
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le = (=DM RNy - Ly, - Ly - 1= 1;-2L,,2). (27)

For 1=L, behavior of Eqs(15) and (16) was so simple that it was possible to guess the result
directly from the numerical analysis.

The task of solving Eq9.15) and(16) is therefore twofold.

First, to determine two linearly independent solutions of homogenous equétigrend(16)
in the cases wheh=min(L,,L,). In these cases solutions are not hypergeometric functions. In the
Appendix we give a method for finding the solution of E¢k5) and(16) in terms of the power
series inN; or N,. For | <min(L,,L,) we obtain in this way an alternative expression for the
hypergeometric functions. FoFmin(L,L,) this method yields at least one of the two linearly
independent solutions. The second solution is found by the method of the reduction of order
described in Sec. IV A below.

Second, the fundamental system is used for the solution of inhomogenous equations by the
method of the variation of constants. One possibility is to apply this method té1Bgand fix
constants on the valudé[’liliﬁé' and 6[;12%52' Then we apply the method first to E€L5) for
N;=L;+1 and fix constants on the values 6[‘15}1&22",,1 and éf'lili,sz’Lz- Second, we apply the
method to Eq(16) for N;=L;+2 and fix constants on the values@'lilz'f;l and@['lilz'ffz",,z. Such
solution, however, is neither fast nor numerically stable. The reason is that solution gfLBgs.
and (16) is simplified by virtue of the fact that these equations become homogenous<dr,
andN;>N,+1 orL;>L, andN,>N,+1, see Eq(22). Further simplifications were found from
numerical experiments given below. All these simplifications must be carefully examined and
taken into account to get numerically stable formulas.

B. Numerical experiments

We found that Eq(15) can be forL;>L, andN,>N;+1 described by just one of the two
linearly independent solutions,

Qﬁ;ﬁ;zvl =K(Ny Ly, Ly Day,, -

where ay, is given by Eq.(24). This equation holds fot<L,. For I=L, the dependence of
QU &;2% on N, can be described as

QK2 = K(Ng, Ly, L) (- D™, (29)

Equation(16) behaves in the same way fbp>L; andN;>N,+1,

Q=K N al, <

whereay, is given by Eq.(26). This equation holds for<L,. Forl=L; andN;>N, we found

Qititeti=, (31)

Ny,N,

These results show that Ed.5) is for L;>L, andN,> N, +1 described by justneof the two
linearly independent solutions. Equati@tf) behaves in this way fok; <L, andN;>N,+1. A
consequence of this is that although Ed$) and(16) are three term recursion relations we need
in the case of Eq(15) for L, >L, and in the case of Eq16) for L; <L, justoneinitial condition
instead of two. In the case of E(.6) for L, <L, andl=L; we do not need initial conditions at all.
From numerical experiments given in Sec. V below, we were able to determine these initial
conditions, that means to determine behavioQQt,{*szi' for L;>L, and Qf'lili,Lﬁ; for L, <L, and
<L,

This simplifies the situation tremendously because it meandrthiad of solving both Eqs.
(16) and (15) simultaneously, we must solve only Eq. (16) ferlL, and Eq. (15) for L>L,.
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As it is clear from the above discussion we need modification of the method of the variation
of constants for the case when one of the solutions is obtained by the method of the reduction of
order[the casd =min(L,L,)] and for special types of equations when for some value of inde-
pendent variable equations become homogenous and their solution in that region is described by
one of the two linearly independent solutig&q. (16) for L; <L, and Eq.(15) for L;>L,]. A
general theory of the variation of constants for these cases is given in the following section.

IV. GENERAL THEORY

In this section a general modification of the method of variation of constants is described. We
consider general linear second order inhomogenous difference equations for the discrete function

fos

frer + Onfn+ afp1 =50 (32)
We assume thdt,=0 forn<L+1 wherelL is integer and that,=0 for alln>M+1. Equation(15)
is obtained from this general equation by settisgN,, L=L,, M=Ny, andfy, = J,("lLﬁzLZ". Equation

+,L1,L2,|

(16) is obtained from this general equation by settimgN,;, L=L;, M=N,, andf,\,lzéleN2
With these assignments we have for both cases

n+L
n-L°

(33

M=-

We first show the method of the reduction of order. This is not new, but for the sake of further
considerations we describe it in greater detail. Then we summarize the method of the variation of
constants and modify it for the cases when one of the solutions was obtained by the reduction of
order and for special types of equations appearing in the calculation of atomic integrals.

A. Reduction of order

Let a, be a solution of the homogenous equation

8ne1+ Ondn + Man-1 = 0. (34)

The second linearly independent solution can be found by the method of the reduction of order.
We search for it in the form

By = (Xq = XU)an. (39

Inserting it into homogenous equati¢d?) (with s,=0) and using Eq(34) we obtain after some
manipulation

an-1
i1 =T
n+1

dn, (36)
where

On = Xn = Xn-1- (37

Considering the last equation successively for descenuiwg get

j
)q —Xp= :E: di' (3E»

i=n+1

Considering Eq(36) successively for descendimgwe get
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n-1

An-mBn-m-1
do= [1 re=m"2d (39)
" k=n-m “ Anan-1 m

Sincea,=0 for n<L+1 we sein—-m-1=L+1 in the last equation. Then we obtain fdy,

n-1

[T

k=L+2
Oh= a8 o (40)
An-1
Inserting this equation into Eq438) we get finally

i-1
j H I

k=L+2
Xj = Xn = 8 +28 410142 > .
i=n+1 a'ia'i—l

(41)

B. Variation of constants

Having two linearly independent solutioag andb,, of the homogenous equation a general
solution of the inhomogenous equatit8®) is obtained by the method of variation of constants

n-1
fo=Cian+Cby+ > Ti(bja,—ajby). (42
j=L+2
Here, T; denotes the ratio
S.
T = —J—, 43
=W, (43
whereW,; is the Wronskian of the solutions
VV]' = aj+lbj - a]-bj+1. (44)

The constantg; andc, in Eq. (42) are fixed by the initial value$ ,; andf ..
For further considerations we derive an alternative form of the WrondMasee also Ref. 2.
Insertingb; from Eq. (35) we rewrite Eq.(44) into the form

W, = = aj413(Xj41 = X)) (45)
Inserting the difference;,,—x; from Eq.(41) into the last equation we obtain

i

W, =—a o8 410147 IT r (46)
k=L+2
Since

W1 =~ a8 410142 (47)

we can write

j
\Nj =W H M- (48)
k=L+2

By means of Eq(47) we can rewrite also Eq41) into the form

Downloaded 17 Oct 2005 to 195.113.33.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



033504-9 Method of variation of constants J. Math. Phys. 46, 033504 (2005)

i-1

IT e

k=L+2

Xi =X = =W D )
: " L+li=n+1 ;g

We note that, quite generally, formu(d2) can be set into an alternative form. Inserting
from Eq. (35 we get

(49)

n-1
fo=anlCp+ ColXe =) + 2 Tjai(x; = X, (50)

j=L+2
where the difference;—x, is given by Eq.(49). This form of the solution is likely to be less
numerically unstable than the forfd2), especially in the cases where one of the solutions was
obtained by the method of the reduction of order. The reason is that ifdBqwe subtract the
numbersb;a, anda;b,,. Insertingb; from Eq. (35) we see that we subtract in fagja,(x;—x_) and
aan(x,—x). These two numbers can be very large especially for larged j. Therefore their
subtraction can cause a loss of significant digits. The advantage db8qis that we directly
calculate theesult of the subtraction.

C. Special type of equations

Until now, our considerations were quite general. Now we turn to the special type ¢3Hq.
for which s,=0 for alln>M+1 whereM is integer and the solution of E¢32) in this region is
fully described by jusbneof the two linearly independent solutions of the homogenous equation

f,=Ka,, (5
whereK is independent om. Comparing Eqs(50) and (51) we get

M+1

K=cy+ (%, —X)Co + _%Tjaj(xj - %) (52
=L+

for arbitraryn> M+ 1. Since this equation holds far> M +1 independently on the value nfwe

get
M+1
C-XC+ X Tiax =K (53
j=L+2
and
M+1
Co— E TJaJZO (54)

j=L+2

The last two equations are a source of numerical instabilities if constaatgdc, are determined
from the initial valuesf, ., and f ,,. To avoid these instabilitieae use Egs. (53) and (54) as
equations determining constantsand . If we do so and insert the result into E§O) we obtain

M+1
fn:an[K— E Tjaj(xj—xn)]. (55)
j=n

Considering this equation far=L+1 we determine the constak
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f M+1
K= L+1+ E TaJ(X] XL+1) (56)
A1 j=L+l

Inserting this back into Eq55) we obtain finally

f n-1 M+1
fo=an| ==+ > Tia(x- xL+1>+E Ti (% — X_41) |- (57)
a4+ j=L+2

Alternatively, we can use Eq35) and rewrite Eq(57) in terms ofa, andb,,

M+1 n-1 M+1
o= [ fuam 3 Taba|+a, 3 T+, > Ta (58)
1

+ j=L+2 j=L+2

The last two equations are likely to be more convenient for computational purposes thd®)Eq.

since there are no cancellations of large numbers in these equations. The possible exception is the
subtraction in the square brackets in E8f), but for the special case of interdsee Sec. Ywe

avoid this difficulty.

V. APPLICATION OF THE METHOD

General theory outlined in the preceding section will be applied to the difference equations
(15) and(16). To do so, we need to calculatg from Eq. (43).

A. Calculation of T;

First we calculate Wronskiaf#4) from Eqg.(48). Insertingr, from Eq. (33) into this equation
we get that Wronskian behaves for both E@s®) and (16) as

G+ Wi

— (— 1)i-L-1
Wi =17 (Gj-L)! 2L+

(59
where we set eithec=L, or L=L;. We note thalV, ., is the only quantity in this equation that
depends on the concrete form gfandb;.

Second, we take the right-hand sigleof Eq. (32) equal to

Lq,L
p 1:-2
§=- 1 (60)
J -L
in case of Eq(15) and
LoL
p 2:=1
5= 2o (61)
j-Ls

in case of Eq(16).
Equationg59), (60), and(61) can be used to simplify formul@3). By inserting Eq(59) with
L=L, and Eq.(60) into Eq.(43) we get in the case of E¢15),
p'—1 Lo
T =- . (62)
W1

Analogously, by inserting Eq59) with L=L; and Eq.(61) into Eq.(43) we get in the case of Eq.
(16),
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pka'_—l
T = —2- (63)
WL1+1
Here, Pi¢ denotes
LiLoyas
Lty - PG T (64)
172 (N2 = L)W,
This quantity was introduced because of the symmetry
PRER, = PN (65)

[see the notes after Eq&2) and (59)]. By combining Egs(21) and (59) we can write forl,
>L,+1,

min(Ny=L;~1,Np-Lp=1)

> (- 1)

g=max0,N,-L,-2)

X(Nl—Lz—q—3><N2—L2—1)<L1+L2+2+q)
Li-L,=-2 q N, +L, .

The casd_,>L;+1 is calculated by means of E(5).

plily — (Ly—- Lo+ 1)I(2L, + 1)!
NNy = >

(66)

B. Numerical experiments and final formulas
1. Case I<min(Lq,L,)

By numerical experiments we found that the initial valdigs for Eq. (15) with L;>L, and
| <L, and for Eq.(16) with L;<L, andl <L, are given as

M+1

flor= (a1 + b)) > T (67)
j=L+1
In the case of Eq(15) this equation holds with.=L,, M=N,, fL+1:6§'1Eﬁ'2Lfi' and witha, b;, and
T; given by~Eqs.(24), (25), and(62). In the case of Eq(16) this equation holds witth.=L;, M
=N,, fL+1:Q[’1L+1iE§§ and witha;, bj, andT; given by Eqs(26), (27), and(63).
Then Eq.(58) can be brought to the form

n-1 M+1
fa=a, 2 Tj(g+b)+(a,+b) > Tja;. (68)
j=L+1 j=n

2. Case |l=L,
It follows from Eg. (29) that in this case one of the two linearly independent solutions is
an,= (- Nt (69)

The second one is determined by the reduction of order. We uséSBdfor fNZ:QK,'lL’,QZLZLZ with
n=N,, L=L,, M=N,, andT; given by Eq.(62). The value off ,; was found from numerical
analysis to be

OnLrtate = (Li+ L+ DIN; - Ly - 2)!
Ny Ly+1 2Ly - Ly- DI(Ny— L, - 1)1 .

(70)
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3. Case I=L;

It follows from Eq.(31) that the constar in Eq. (51) is equal to zero, so we can use [Esp)
for lezQﬁtﬁ?’Ll with n=Ny, L=L;, M=N,, andT; calculated from Eq(63).

One of the two linearly independent solutions of homogenous equélt®)ris given by Eq.
(AB) of the Appendix withJ=2L,+1,

2L4+1
ay, = (= DM X (N - L) (71)
j=0

whereh; are given by Eq(A1l) and whereI12L1+1:1.
Using EQgs.(33) and(49) we can write Eq(55) for the case considered as

M+1 i k-L-1,
W, -1 k+L-1)!
fo=—ay o > T > O ! (72
(2I— + 1)! j=n+1 k=n+1 akak—l(k_ L- 1)!

This expression is still not entirely satisfactory. We found that there is residual instability for
close toL+1. To eliminate it we rewrite the double summation in the last equation

M+1

Wi (- D Hk+L- 1)
(2L + 1)! k:%rl a1 (k=L - 1)! 12::‘( Tia. (73

The source of instability fon close toL+1 is an interesting identity,

fn:_an

M+1

> Tja=0. (74)
j=L+1

Therefore, we use this identity in EGZ3) and rewrite this equation to the form

M+1 k-1
Wi (- DY k+L - 1)
fn= Ta. 7
n E:ln(2L+1)!k:%rl aa (k- L-1)! j=§L}rl i (75)

This equation is stable for afl from L+1 to M. Forn> M, it yields zero as it should.

C. Numerical tests

We tested derived formulas numerically for very large quantum numbers. First we, set
=16 andL,=14, second we consideréd=20 andL,=10. We tookN;=50 and varied\, from
L,+1 to 70 and from 2 toL,. Then we reversed the role bf andL, and alsaN; andN,. These
tests are rather severe; in normal calculation one encounters much more favorable situations. The
formulas were run in double precision arithmetics and compared with the exact solutions of Egs.
(15) and(16) programmed irMAPLE in the form of the recursive algorithm run in rational arith-
metics. Forl<min(L,L,), the hypergeometric function®4)—(27) were calculated from the
MAPLE subroutine. The numerical stable way of their calculations is given in the Appendix. For
IL,—L,|=2 the relative error of the derived formulas was typically of order*3CFor the case
|L;—L,|=10 the relative error was typically two orders higher. This shows that numerical stability
of formulas slightly deteriorates with increasing differefice-L,|. However, one can expect that
with increasing difference of the angular momenta of the electrons the contributions of the terms
with large numbers of nodes to the energy is relatively small. Therefore, the achieved numerical
stability is sufficient for all practical purposes.

VI. CONCLUSIONS

In this paper we extended the method of numerically stable calculation of the atomic integrals
suggested in our previous pabémr the S-states of two-electron atoms to the states of arbitrary
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total angular momenta. Thus, in these two papers the complete solution of the numerically stable
calculation of the atomic integrals is given. In the first pépee succeeded in transformation of

the problem of the numerical stable calculation of the atomic integrals to the problem of the
numerical stable solution of the difference equations. In this paper we completed our program by
solving the latter problem in required generality. To achieve this aim we suggested a computa-
tionally stable method for the solution of inhomogenous difference equations that for certain
values of the discrete independent variable become homogenous and in that region are described
by just one of the two linearly independent solutions. The method was applied to the difference
equations appearing in the radial part of the atomic integrals and tested for very large quantum
numbers. These tests show high numerical stability of the suggested method. The stability slightly
decreases with increasing difference of the angular momenta of the electrons.

The method suggested in these two papers can be used for the calculation of the radial part of
the Coulomb interaction between electrons whose orbitals are expanded from the same center.
This covers all atoms and the simplest molecules. The results obtained in these papers can be
directly used for the configuration interaction calculation of the excited states of two electron
atoms. This will be reported elsewhere.

Because of the potential importance of the achieved results it would be desirable to put them
on a rigorous basis. The paper is based on the observation thatlBgand(16) can be in the
region where they become homogenous described byojusbf the two linearly independent
solutions. Although we are certain about this observation, one shouldigssquations behave in
this way. The same applies to our gues$€s, (70), and(74), and for Eq.(A17) in the Appendix.

Therefore, we believe that the results achieved in this paper are of some interest from the point
of view of atomic physics as well as pure mathematics.
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APPENDIX

In this appendix we suggest a solution of the homogenous equafibnand(16). Since this
solution is given in terms of the hypergeometric functi(a, b, c, 2) we find a particularly useful
form of these functions that can be used also in @&6q).

Let us rewrite homogenous equatioii$) and(16) into a general form,

(N=L)Gns1~ (N+L)gp-1 =23 - L)g,=0. (AL)

This equation is obtained from the original homogenous equafién

(n=Dfp=(n+D)fy + 200+ DF =0, (A2)
by setting eitherf,,=g,, andJ=L-I1-1 or f,=(-1)"g, and J=L+I+1. Equation(Al) is obtained
also from homogenous equati¢hs),

(n=UD)f - (n+L)f,—2f,=0, (A3)
by setting eitherf,,=g, and J=L+I or f,=(-1)"g, and J=L-I. Due to the selection rules for
Clebsch—Gordan coefficients mentioned after &) the differencel -1 is always even. There-
fore, the parametert is odd in the case of Eq16) and even in the case of E(L5).

For J<L-1 the solution of Eq(Al) is given by the hypergeometric function
g,=F(n-L,-J;-2L;2). (A4)

Let us remind the form of the hypergeometric functiefa,b,c,z) here,
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a(a+ 1)b(b+1)z_2+

c(c+1) 2! (AS5)

F(a,b,c,2=1 +a—cbz+
It turns out that this form of the hypergeometric functions is useful onlyafolose to zero, i.e.,
only for n close toL. For largern, a more suitable form is needed.
Since we want to get expression also for the hypergeometric functions appearing(fOEq.
we allowL to be half-integral anah to be half-integral and smaller thant+ 1.
We search for the solution of E¢AL) in the form of the series

J
gn=2 hy(n-L). (A6)
j=0

Later on, it will be clear why we choose the upper bound of summakidrhe advantage of this
expansion is that the coefficierttsdo not change the sign. Therefore, folarger tharl this way
of calculating the hypergeometric functions is numerically stable and can be used for the hyper-
geometric functions appearing in E424)—(27).

SinceJ must be a non-negative integer, tor| we obtain only one solution in the for(A6).
If <L, we obtain in this way two linearly independent solutions.

The remaining hypergeometric functions to be calculated are those appearing(iOE&.or
these functions argumeatin the definition(A5) is always negative. As it is clear from EGA4)
it corresponds to the situation wher< L. The use of Eq(A6) is not advantageous in this case,
because for negative value 0fL we get in(A6) the sum of terms with changing signs. When
is close toL, the best way is to calculate the hypergeometric functions from the defiriiABn
For n more distant fromL we calculate the hypergeometric functions from the series

J
O =2 G (A7)
i=0

It appears that for evehthe coefficients; with odd j equal zero and for odd the coefficients;
with evenj equal zero. From this fact it immediately follows that

F(-n-L,-J;-2L;2)=(-1)’F(n-L,-J;-2L,2). (A8)

Using this equation we can always raise the value of the paraaeteer L.
In the following we first show how to calculate the coefficiehtsn the expansioriA6), then
we calculate the coefficients in the expansiortA7).

Expansion around n=L

We make substitutioM=n-L in Eq. (Al). Then Eq.(Al) reads

Non+1— (N+2L)gn-1 — 2(J - L)gy =0. (A9)

Inserting the expansiofA6) and using the binomial formula we obtain after some manipulation

J I i
2 [2 (Jk)N"+1(1 (= 1)ik = 2|_2 NK(= 1)i k= 2(J- L)Nj] h;=0. (A10)
j=0 | k=0 k=0

Comparing now terms with the same powerd\oke get for the highest powdt identically zero.

It means that the coefficieht; is free for the normalization of the solution. This is the reason why
we chose in Eq(A6) the upper bound of the summation equali&oing then successively to the
lower powers ofN we obtain recurrence relations for the coefficiemts
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j-1

P S S T o e RN [
TR TP e ] B L

Normalization of the serie6A6) to the hypergeometric function is done by comparing E44,)
and (A6) for some value of. The best choice is=L since then we have

ho
h;’
where we used the identify(0,-J;-2L;2)=1. The ratiohy/h; is calculated from Eq(A11).

1=h, (A12)

Expansion around n=0

We proceed along the same lines as in the derivation of recurrence relations for the coeffi-
cientsh;. We insert the expansia\7) into Eq.(A1), use binomial formula and compare the terms
with the same powers aof. After some manipulation we obtain

p-1 .
Copp__ 1 oz (=2
¢ 2p(0-2p)in ¢ (2p-2j+1)!

[J-2p-L(2p-2j+1)] (A13)

for p running from 1 toJ/2 for J even and tdJ-1)/2 for J odd. The coefficients;_», ; equal
zero.

The coefficientc; is determined by comparing serié&7) and the hypergeometric function
(A4) for somen. Settingn=L we obtain

J
1=¢,> I, (A14)
j=0 CJ
where we used the identify(0,-J;-2L;2)=1. For practical purposes, however, this form is not
very convenient, since there is a cancellation of large numbers in the sum on the right-hand side.
For this reason the use of serigs7) is not suitable for calculation of the hypergeometric func-
tions with n comparable or greater thdan Instead we determine the constaptas follows.
For even values o§=2P the constant,p is found by comparing EqgA4) and (A7) for n
:0,

C
F(-L,-2P;—-2L;2) = Cop—2, (A15)
Cop
where the ratia,/c,p is calculated from EqAL3). The values of(-L,-2P;-2L, 2) were found
from the numerical experiments to be

P-1

2p+1
F(-L,-2P,-2L,2)=]] b

. A16
o 2L-2p-1 (AL0)

For odd values 0§=2P+1, comparison of EqgA4) and(A7) yields forn=0 nothing, since both
sides are identically equal to zero. However, the consigny can be calculated from remarkable
identity

C
Copr1= o5 (A17)

found by numerical experiments.
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