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In this paper we extend the method for numerically stable calculation of the atomic
integrals suggested in our previous paper for theS-states of two-electron atoms to
the states with arbitrary total angular momenta. The extension consists in finding
numerically stable forms of the solution of difference equations appearing in the
calculation of the radial part of the atomic integrals. These equations become for
some value of the independent variable homogenous and their solution in that
region is described by one of the two linearly independent solutions. Modification
of the method of the variation of constants for this special type of linear second
order inhomogenous difference equations is suggested and applied. ©2005
American Institute of Physics.fDOI: 10.1063/1.1849811g

I. INTRODUCTION

This work grew out from the search for a numerically stable method of the solution of linear
inhomogenous second order difference equations appearing in the calculation of the radial part of
the atomic integrals.1 Generally, once we know one of the two linearly independent solutions of
the homogenous equation, the second solution can be obtained by the method of the reduction of
order.2 The solution of the inhomogenous equation is then obtained by the method of the variation
of constants.2 However, it turns out that for the difference equations appearing in the calculation
of the atomic integrals this general well-known procedure is of little use in its standard form. The
reason is that these difference equations become for certain values of the independent variable
homogenous and their solution in that region is described by one of the two linearly independent
solutions. This behavior results from the general formula by several cancellations of large num-
bers. If these cancellations are left on the computer working, for example, in double precision
arithmetics, totally wrong results are obtained.

Therefore, a general method for obtaining a numerically stable solution of this type of differ-
ence equation is given in this paper. The method is applied to the special case of difference
equations appearing in the calculation of the radial part of the atomic integrals. Thus, the method
suggested in our previous paper for theS-states of the two-electron atoms is extended here to the
states with arbitrary total angular momenta. Since in general there are at most two-electron inter-
actions, these results can be extended to all atoms and more generally to all one-center integrals.

The paper is organized as follows. In Sec. II we briefly summarize the calculation of the
atomic integrals via the multipole expansion of Coulomb potential. Here, we proceed along the
lines of our previous paper.1 After integrating out angular degrees of freedom, we use analog of
the Wigner–Eckart theorem for the radial functions. This reduces the integration over four radial
functions to the integration over two radial functions. Then we write down a generalization of the
difference equations for the reduced radial integrals derived in Ref. 1 for theS-states to the states
of arbitrary total angular momenta of the electrons. The main difference is the fact that for the
states of the nonzero total angular momentum the difference equations are inhomogenous. In Sec.
III we discuss solutions of these equations. We present results of numerical experiments that show
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that the difference equations are in a region where they are homogenous described by just one of
the two linearly independent solutions. In Sec. IV we first briefly summarize general methods of
the reduction of order and the variation of constants. We modify the method of the variation of
constants for the cases when the second of the two linearly independent solutions of homogenous
equations is obtained by the method of the reduction of order. The form proposed by us is more
suitable for computational purposes. We then turn our attention to the special type of equations
appearing in the calculation of the atomic integrals and derive numerically stable forms of their
solution. In Sec. V we apply the general method of Sec. IV to the difference equations for the
reduced radial integrals and test it for the case of very large quantum numbers. In Sec. VI, a
summary of the achieved results and perspectives of their further applications are given. In the
Appendix computationally suitable forms of the hypergeometric functions needed in Secs. II and
III are given.

II. CALCULATION OF THE ATOMIC INTEGRALS

In this section we derive the difference equations for the reduced radial part of the atomic
integrals. The derivation of these equations was given in great detail in Ref. 1 for theS-states of
two-electron atoms. What is difficult in the extension of the method described in Ref. 1 for the
S-states to the general state is thesolution of these difference equations, not their derivation.
Therefore, we shall proceed very briefly.

We search for the exact two-electron wave function by the expansion into the symmetry
adapted products of the one-electron wave functions

uil = 2−s1+dl i1,l i2
dni1,ni2

d/2fRni1,l i1
sr1dRni2,l i2

sr2dusl i1,l i2dLl ± Rni2,l i2
sr1dRni1,l i1

sr2dusl i2,l i1dLlg. s1d

Here, the statesusl1, l2dLl are the eigenfunctions of the square and the third component of the sum
of the angular momenta of two electrons

usl1,l2dLl = o
m1=−l1

l1

sl1,m1,l2,M − m1uL,Mdul1,m1ls1dul2,M − m1ls2d, s2d

where s u d denotes Clebsch–Gordan coefficients. Their explicit form is given, for example, in
Refs. 3–5. The radial functionsRn,l are eigenfuctions of one of the generators of the sos2,1d
algebra1 and will be described in greater detail later.

A. Multipole expansion

The matrix elements of the Coulomb interaction, i.e., repulsion integrals, are calculated by
means of the multipole expansion of the operatorr12

−1,

r12
−1 =

1

r.
o
l=0

` S r,

r.
Dl

PlsnW1 . nW2d, s3d

where r,=minsr1,r2d and r.=maxsr1,r2d, Plsxd denotes the Legendre polynomials. With the
usual definition of the inner productsto avoid confusion we note that the inner product used in
Ref. 1 differs from the usual one by the factorr−1d and multipole expansions3d the matrix
elements of the operatorr12

−1 between the statess1d can be written as

ki ur12
−1u jl = 2−sdni1,ni2

dl i1,l i2
+dnj1,nj2

dl j1,l j2
d/2F o

l=maxsul i1−l j1u,ul i2−l j2ud

minsl i1+l j1,l i2+l j2d

ul i1,l i2,l j1,l j2,lXni1,ni2,nj1,nj2

l i1,l i2,l j1,l j2,l

± o
l=maxsul i1−l j2u,ul j1−l i2ud

minsl i1+l j2,l j1+l i2d

ul i1,l i2,l j2,l j1,lXni1,ni2,nj2,nj1

l i1,l i2,l j2,l j1,l G , s4d

wherel in the summation increases by 2.
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The angular partul i1,l i2,l j1,l j2,l corresponds to the matrix elements of the Legendre polynomials
PlsnW1.nW2d between the coupled statess2d,

ul i1,l i2,l j1,l j2,l = ksl i1,l i2dLuPlsnW1 . nW2dusl j1,l j2dLl

= s− 1dL+l+l i1−l j1+l i2−l j2
Îs2l i1 + 1ds2l i2 + 1ds2l j1 + 1ds2l j2 + 1d

2l + 1

3Wsl i1,l j1,l i2,l j2,l,Ldsl i1,0,l j1,0ul,0dsl i2,0,l j2,0ul,0d, s5d

whereWsa,b,c,d;e, fd are the so-called Racah coefficients and their explicit form is given, for
example, in Refs. 4 and 5. The Clebch–Gordan coefficientssa,0 ,b,0uc,0d are zero unlessa, b,
andc satisfy the triangle inequalityua−buøcøa+b anda+b+c is even. This reduces the infinite
sum in Eq.s3d to the finite number of terms in Eq.s4d.

The radial part of the integration reads

Xni1,ni2,nj1,nj2

l i1,l i2,l j1,l j2,l =E
0

`

dr1E
0

`

dr2 r1
2r2

2Rni1,l i1
sr1dRni2,l i2

sr2d
r,

l

r.
l+1Rnj1,l j1

sr1dRnj2,l j2
sr2d

=E
0

`

dr1 Rni1,l i1
sr1dRnj1,l j1

sr1dr1
l+2E

r1

`

dr2 Rni2,l i2
sr2dRnj2,l j2

sr2dr2
−l+1

+E
0

`

dr1 Rni1,l i1
sr1dRnj1,l j1

sr1dr1
−l+1E

0

r1

dr2 Rni2,l i2
sr2dRnj2,l j2

sr2dr2
l+2. s6d

B. Reduction of the radial integrals

Using the analog of the Wigner–Eckart theorem for sos2,1d algebra1 we can write the integrals
over four radial functions as a linear combination of the integrals over two radial functions

Xni1,ni2,nj1,nj2

l i1,l i2,l j1,l j2,l = 2−2Ani1,nj1

l i1,l j1 Ani2,nj2

l i2,l j2 o
n1=−1

ni1+nj1−l i1−l j1−2

cni1,nj1,n1

l i1,l j1 o
n2=−1

ni2+nj2−l i2−l j2−2

cni2,nj2,n2

l i2,l j2

3 Q̃ni1+nj1−1−n1,ni2+nj2−1−n2

l i1+l j1,l i2+l j2,l , s7d

where the multiplicative factorAni,nj

l i,l j equals

Ani,nj

l i,l j =
21−ni−njsni + nj − l i − l j − 2d!sni + l i + nj + l jd!

sni − l i − 1d!snj − l j − 1d!
Îsni − l i − 1d!

sni + l id!
Îsnj − l j − 1d!

snj + l jd!
. s8d

The coefficientscni,nj,n
li,l j of the linear combination read

cni,nj,n
li,l j = Cni,nj,n

li,l j −
sni + nj − l i − l j − 2 −nd
sni + nj + l i + l j − n − 1d

Cni,nj,n+1
l i,l j , s9d

where the coefficientsCni,nj,n
li,l j are given as

Cni,nj,n
li,l j =

Fs− ni + l i + 1,−n;− ni − nj + l i + l j + 2;2dFs− ni − l i,− n;− ni − nj − l i − l j ;2d
sni + l i + nj + l j − n − 1d!n!

s10d

for nù0 and equal zero otherwise. Here,Fsa ,b ;g ;zd denotes the hypergeometric functionssee,
e.g., Refs. 6–8d. We note that Eq.s43d in Ref. 1 is incorrect.

Q̃N1,N2

L1,L2,l denotes the integrals over two radial functions
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Q̃N1,N2

L1,L2,l = Q̃N1,N2

+,L1,L2,l + Q̃N1,N2

−,L1,L2,l . s11d

Here,

Q̃N1,N2

+,L1,L2,l =E
0

`

dr1 R̃N1,L1
s2r1dr1

l+1E
r1

`

dr2 R̃N2,L2
s2r2dr2

−l s12d

and

Q̃N1,N2

−,L1,L2,l =E
0

`

dr1 R̃N1,L1
s2r1dr1

−lE
0

r1

dr2 R̃N2,L2
s2r2dr2

l+1, s13d

whereR̃N,Lsrd differs from RN,Lsrd by the normalization factor

R̃N,Lsrd = 2Î sN + Ld!
sN − L − 1d!

RN,Lsrd. s14d

We note that due to the selection rules for the Clebsch–Gordan coefficients mentioned earlier
the differenceuL1−L2u is always even. Moreover, the sumL1+L2+ l must be even as well.

C. Difference equations for the reduced integrals

Proceeding in complete analogy with the considerations made in Ref. 1 we obtain the follow-

ing difference equations for the integralsQ̃N1,N2

±,L1,L2,l,

sN2 − L2dQ̃N1,N2+1
+,L1,L2,l − sN2 + L2dQ̃N1,N2−1

+,L1,L2,l − 2lQ̃N1,N2

+,L1,L2,l = − pN1,N2

L1,L2 s15d

and

sN1 − L1dQ̃N1+1,N2

+,L1,L2,l − sN1 + L1dQ̃N1−1,N2

+,L1,L2,l + 2sl + 1dQ̃N1,N2

+,L1,L2,l = pN1,N2

L1,L2 . s16d

The values ofQ̃N1,N2

−,L1,L2,l are obtained from the relation1

Q̃N1,N2

−,L1,L2,l = Q̃N2,N1

+,L2,L1,l . s17d

Here, the right-hand side of equationspN1,N2

L1,L2 equals

pN1,N2

L1,L2 =E
0

`

dr r 2R̃N1,L1
s2rdR̃N2,L2

s2rd. s18d

Using the explicit form of the radial functions,9

R̃n,lsrd = 22e−rs2rdlLn−l−1
2l+1 s2rd, s19d

and the expression for the generalized Laguerre polynomialsssee, e.g., Refs. 6–8d

LK
asrd =

1

K!
err−a dK

drK se−rrK+ad, s20d

we obtain forL1.L2+1 integrating by partsssee, e.g., Ref. 5d,
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pN1,N2

L1,L2 =
sL1 + L2 + 2d!

2 o
q=maxs0,N2−L1−2d

minsN1−L1−1,N2−L2−1d

s− 1dN2−L2−1−q

3SN1 − L2 − q − 3

L1 − L2 − 2
DSL1 + L2 + 2 +q

L1 + L2 + 2
DS L1 − L2 + 1

N2 − L2 − 1 −q
D s21d

for N2øN1+1 and

pN1,N2

L1,L2 = 0 s22d

otherwise. The values ofpN1,N2

L1,L2 for L2.L1+1 are obtained from the obvious symmetrypN1,N2

L1,L2

=pN2,N1

L2,L1 , see Eq.s18d.
Using difference equationss15d ands16d the integrals are reduced to the integrals over node-

less functions that can be calculated analytically,1

Q̃L1+1,L2+1
+,L1,L2,l = 2−1sL1 + L2 + 1d!Fs1,−L2 + l ;− L1 − L2 − 1;2d. s23d

The difference equationss15d and s16d were programmed inMAPLE in form of the recursive
algorithm and solved both in rational and 16 digit arithmetics. From these numerical experiments
we found that for large quantum numbersN1, N2, L1, and L2 numerical instabilities appear.
Moreover, after some time the recursive algorithm took so much computer memory that further
computation was not feasible.

Therefore, we search for the explicit solution of Eqs.s15d and s16d. This is done in the
following section.

III. SOLUTION OF DIFFERENCE EQUATIONS

In this section we discuss the explicit solution of Eqs.s15d ands16d. We argue that the method
of variation of constants cannot be used in its standard form and discuss the result of our numeri-
cal experiments. These experiments show that Eqs.s15d ands16d are in the region where they are
homogenous described by just one of the two linearly independent solutions.

A. The extension of the method given in Ref. 1

In our previous paper1 we solved Eqs.s15d and s16d for the S-states. It follows from the
properties of the Clebsch–Gordan coefficients that we must consider the only caseL1=L2=L. In
such a case the situation is simplified by virtue of the fact that the right-hand sidepN1,N2

L,L vanishes
wheneveruN1−N2u.1.1 That means that Eqs.s15d ands16d are for most of the valuesN1 andN2

homogenous. Therefore, it was sufficient to find two linearly independent solutionssfundamental
systemd of homogenous equationss15d ands16d for l ,L. The two linearly independent solutions
of homogenous equations15d are

aN2
= s− 1dN2−L2−1FsN2 − L2,− L2 + l ;− 2L2;2d s24d

and

bN2
= FsN2 − L2,− L2 − l ;− 2L2;2d. s25d

The two linearly independent solutions of the homogenous equations16d are

aN1
= FsN1 − L1 − 1,−L1 + l + 1;− 2L1;2d s26d

and
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bN1
= s− 1dN1−L1−1FsN1 − L1,− L1 − l − 1;− 2L1,2d. s27d

For l =L, behavior of Eqs.s15d and s16d was so simple that it was possible to guess the result
directly from the numerical analysis.

The task of solving Eqs.s15d and s16d is therefore twofold.
First, to determine two linearly independent solutions of homogenous equationss15d ands16d

in the cases whenl =minsL1,L2d. In these cases solutions are not hypergeometric functions. In the
Appendix we give a method for finding the solution of Eqs.s15d and s16d in terms of the power
series inN1 or N2. For l ,minsL1,L2d we obtain in this way an alternative expression for the
hypergeometric functions. Forl =minsL1,L2d this method yields at least one of the two linearly
independent solutions. The second solution is found by the method of the reduction of order
described in Sec. IV A below.

Second, the fundamental system is used for the solution of inhomogenous equations by the
method of the variation of constants. One possibility is to apply this method to Eq.s16d and fix

constants on the valuesQ̃L1+1,N2

+,L1,L2,l and Q̃L1+2,N2

+,L1,L2,l. Then we apply the method first to Eq.s15d for

N1=L1+1 and fix constants on the values ofQ̃L1+1,L2+1
+,L1,L2,l and Q̃L1+1,L2+2

+,L1,L2,l . Second, we apply the

method to Eq.s16d for N1=L1+2 and fix constants on the values ofQ̃L1+2,L2+1
+,L1,L2,l andQ̃L1+2,L2+2

+,L1,L2,l . Such
solution, however, is neither fast nor numerically stable. The reason is that solution of Eqs.s15d
and s16d is simplified by virtue of the fact that these equations become homogenous forL1,L2

andN1.N2+1 or L1.L2 andN2.N1+1, see Eq.s22d. Further simplifications were found from
numerical experiments given below. All these simplifications must be carefully examined and
taken into account to get numerically stable formulas.

B. Numerical experiments

We found that Eq.s15d can be forL1.L2 and N2.N1+1 described by just one of the two
linearly independent solutions,

QN1,N2

+,L1,L2,l = KsN1,L1,L2,ldaN2
, s28d

where aN2
is given by Eq.s24d. This equation holds forl ,L2. For l =L2 the dependence of

QN1,N2

+,L1,L2,L2 on N2 can be described as

QN1,N2

+,L1,L2,L2 = KsN1,L1,L2ds− 1dN2−L2−1. s29d

Equations16d behaves in the same way forL2.L1 andN1.N2+1,

QN1,N2

+,L1,L2,l = KsN2,L1,L2,ldaN1
, s30d

whereaN1
is given by Eq.s26d. This equation holds forl ,L1. For l =L1 andN1.N2 we found

QN1,N2

+,L1,L2,L1 = 0. s31d

These results show that Eq.s15d is for L1.L2 andN2.N1+1 described by justoneof the two
linearly independent solutions. Equations16d behaves in this way forL1,L2 andN1.N2+1. A
consequence of this is that although Eqs.s15d ands16d are three term recursion relations we need
in the case of Eq.s15d for L1.L2 and in the case of Eq.s16d for L1,L2 just one initial condition
instead of two. In the case of Eq.s16d for L1,L2 andl =L1 we do not need initial conditions at all.
From numerical experiments given in Sec. V below, we were able to determine these initial

conditions, that means to determine behavior ofQ̃N1,L2+1
+,L1,L2,l for L1.L2 andQ̃L1+1,N2

+,L1,L2,l for L1,L2 and
l ,L1.

This simplifies the situation tremendously because it means thatinstead of solving both Eqs.
(16) and (15) simultaneously, we must solve only Eq. (16) for L1,L2 and Eq. (15) for L1.L2.
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As it is clear from the above discussion we need modification of the method of the variation
of constants for the case when one of the solutions is obtained by the method of the reduction of
order fthe casel =minsL1,L2dg and for special types of equations when for some value of inde-
pendent variable equations become homogenous and their solution in that region is described by
one of the two linearly independent solutionsfEq. s16d for L1,L2 and Eq.s15d for L1.L2g. A
general theory of the variation of constants for these cases is given in the following section.

IV. GENERAL THEORY

In this section a general modification of the method of variation of constants is described. We
consider general linear second order inhomogenous difference equations for the discrete function
fn,

fn+1 + qnfn + rnfn−1 = sn. s32d

We assume thatfn=0 for n,L+1 whereL is integer and thatsn=0 for all n.M +1. Equations15d
is obtained from this general equation by settingn=N2, L=L2, M =N1, andfN2

=Q̃N1,N2

+,L1,L2,l. Equation

s16d is obtained from this general equation by settingn=N1, L=L1, M =N2, and fN1
=Q̃N1,N2

+,L1,L2,l.
With these assignments we have for both cases

rn = −
n + L

n − L
. s33d

We first show the method of the reduction of order. This is not new, but for the sake of further
considerations we describe it in greater detail. Then we summarize the method of the variation of
constants and modify it for the cases when one of the solutions was obtained by the reduction of
order and for special types of equations appearing in the calculation of atomic integrals.

A. Reduction of order

Let an be a solution of the homogenous equation

an+1 + qnan + rnan−1 = 0. s34d

The second linearly independent solution can be found by the method of the reduction of order.
We search for it in the form

bn = sxn − xLdan. s35d

Inserting it into homogenous equations32d swith sn=0d and using Eq.s34d we obtain after some
manipulation

dn+1 = rn
an−1

an+1
dn, s36d

where

dn = xn − xn−1. s37d

Considering the last equation successively for descendingn we get

xj − xn = o
i=n+1

j

di . s38d

Considering Eq.s36d successively for descendingn we get
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dn = p
k=n−m

n−1

rk
an−man−m−1

anan−1
dn−m. s39d

Sincean=0 for n,L+1 we setn−m−1=L+1 in the last equation. Then we obtain fordn,

dn =

p
k=L+2

n−1

rk

anan−1
aL+2aL+1dL+2. s40d

Inserting this equation into Eq.s38d we get finally

xj − xn = aL+2aL+1dL+2 o
i=n+1

j p
k=L+2

i−1

rk

aiai−1
. s41d

B. Variation of constants

Having two linearly independent solutionsan andbn of the homogenous equation a general
solution of the inhomogenous equations32d is obtained by the method of variation of constants2

fn = c1an + c2bn + o
j=L+2

n−1

Tjsbjan − ajbnd. s42d

Here,Tj denotes the ratio

Tj =
sj

Wj
, s43d

whereWj is the Wronskian of the solutions

Wj = aj+1bj − ajbj+1. s44d

The constantsc1 andc2 in Eq. s42d are fixed by the initial valuesfL+1 and fL+2.
For further considerations we derive an alternative form of the WronskianWj, see also Ref. 2.

Insertingbj from Eq. s35d we rewrite Eq.s44d into the form

Wj = − aj+1ajsxj+1 − xjd. s45d

Inserting the differencexj+1−xj from Eq. s41d into the last equation we obtain

Wj = − aL+2aL+1dL+2 p
k=L+2

j

rk. s46d

Since

WL+1 = − aL+2aL+1dL+2 s47d

we can write

Wj = WL+1 p
k=L+2

j

rk. s48d

By means of Eq.s47d we can rewrite also Eq.s41d into the form
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xj − xn = − WL+1 o
i=n+1

j p
k=L+2

i−1

rk

aiai−1
. s49d

We note that, quite generally, formulas42d can be set into an alternative form. Insertingbn

from Eq. s35d we get

fn = anfc1 + c2sxn − xLd + o
j=L+2

n−1

Tjajsxj − xndg, s50d

where the differencexj −xn is given by Eq.s49d. This form of the solution is likely to be less
numerically unstable than the forms42d, especially in the cases where one of the solutions was
obtained by the method of the reduction of order. The reason is that in Eq.s42d we subtract the
numbersbjan andajbn. Insertingbj from Eq. s35d we see that we subtract in factajansxj −xLd and
ajansxn−xLd. These two numbers can be very large especially for largen and j . Therefore their
subtraction can cause a loss of significant digits. The advantage of Eq.s50d is that we directly
calculate theresult of the subtraction.

C. Special type of equations

Until now, our considerations were quite general. Now we turn to the special type of Eq.s32d
for which sn=0 for all n.M +1 whereM is integer and the solution of Eq.s32d in this region is
fully described by justoneof the two linearly independent solutions of the homogenous equation

fn = Kan, s51d

whereK is independent onn. Comparing Eqs.s50d and s51d we get

K = c1 + sxn − xLdc2 + o
j=L+2

M+1

Tjajsxj − xnd s52d

for arbitraryn.M +1. Since this equation holds forn.M +1 independently on the value ofn we
get

c1 − xLc2 + o
j=L+2

M+1

Tjajxj = K s53d

and

c2 − o
j=L+2

M+1

Tjaj = 0. s54d

The last two equations are a source of numerical instabilities if constantsc1 andc2 are determined
from the initial valuesfL+1 and fL+2. To avoid these instabilitieswe use Eqs. (53) and (54) as
equations determining constants c1 and c2. If we do so and insert the result into Eq.s50d we obtain

fn = anFK − o
j=n

M+1

Tjajsxj − xndG . s55d

Considering this equation forn=L+1 we determine the constantK,
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K =
fL+1

aL+1
+ o

j=L+1

M+1

Tjajsxj − xL+1d. s56d

Inserting this back into Eq.s55d we obtain finally

fn = anF fL+1

aL+1
+ o

j=L+2

n−1

Tjajsxj − xL+1d + o
j=n

M+1

Tjajsxn − xL+1dG . s57d

Alternatively, we can use Eq.s35d and rewrite Eq.s57d in terms ofan andbn,

fn =
an

aL+1
F fL+1 − o

j=L+2

M+1

TjajbL+1G + an o
j=L+2

n−1

Tjbj + bn o
j=n

M+1

Tjaj . s58d

The last two equations are likely to be more convenient for computational purposes than Eq.s42d
since there are no cancellations of large numbers in these equations. The possible exception is the
subtraction in the square brackets in Eq.s58d, but for the special case of interestssee Sec. Vd we
avoid this difficulty.

V. APPLICATION OF THE METHOD

General theory outlined in the preceding section will be applied to the difference equations
s15d and s16d. To do so, we need to calculateTj from Eq. s43d.

A. Calculation of Tj

First we calculate Wronskians44d from Eq.s48d. Insertingrk from Eq.s33d into this equation
we get that Wronskian behaves for both Eqs.s15d and s16d as

Wj = s− 1d j−L−1s j + Ld!
s j − Ld!

WL+1

s2L + 1d!
, s59d

where we set eitherL=L2 or L=L1. We note thatWL+1 is the only quantity in this equation that
depends on the concrete form ofaj andbj.

Second, we take the right-hand sidesj of Eq. s32d equal to

sj = −
pN1,j

L1,L2

j − L2
s60d

in case of Eq.s15d and

sj =
pN2,j

L2,L1

j − L1
s61d

in case of Eq.s16d.
Equationss59d, s60d, ands61d can be used to simplify formulas43d. By inserting Eq.s59d with

L=L2 and Eq.s60d into Eq. s43d we get in the case of Eq.s15d,

Tj = −
PN1,j

L1,L2

WL2+1
. s62d

Analogously, by inserting Eq.s59d with L=L1 and Eq.s61d into Eq.s43d we get in the case of Eq.
s16d,
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Tj =
PN2,j

L2,L1

WL1+1
. s63d

Here,PN1,N2

L1,L2 denotes

PN1,N2

L1,L2 =
pN1,N2

L1,L2 WL2+1

sN2 − L2dWN2

. s64d

This quantity was introduced because of the symmetry

PN1,N2

L1,L2 = PN2,N1

L2,L1 s65d

fsee the notes after Eqs.s22d and s59dg. By combining Eqs.s21d and s59d we can write forL1

.L2+1,

PN1,N2

L1,L2 =
sL1 − L2 + 1d!s2L2 + 1d!

2 o
q=maxs0,N2−L1−2d

minsN1−L1−1,N2−L2−1d

s− 1dq

3SN1 − L2 − q − 3

L1 − L2 − 2
DSN2 − L2 − 1

q
DSL1 + L2 + 2 +q

N2 + L2
D . s66d

The caseL2.L1+1 is calculated by means of Eq.s65d.

B. Numerical experiments and final formulas

1. Case l <min „L1,L2…

By numerical experiments we found that the initial valuesfL+1 for Eq. s15d with L1.L2 and
l ,L2 and for Eq.s16d with L1,L2 and l ,L1 are given as

fL+1 = saL+1 + bL+1d o
j=L+1

M+1

Tjaj . s67d

In the case of Eq.s15d this equation holds withL=L2, M =N1, fL+1=Q̃N1,L2+1
+,L1,L2,l and withaj, bj, and

Tj given by Eqs.s24d, s25d, ands62d. In the case of Eq.s16d this equation holds withL=L1, M

=N2, fL+1=Q̃L1+1,N2

+,L1,L2,l and withaj, bj, andTj given by Eqs.s26d, s27d, ands63d.
Then Eq.s58d can be brought to the form

fn = an o
j=L+1

n−1

Tjsaj + bjd + san + bnd o
j=n

M+1

Tjaj . s68d

2. Case l =L2

It follows from Eq. s29d that in this case one of the two linearly independent solutions is

aN2
= s− 1dN2−L2−1. s69d

The second one is determined by the reduction of order. We use Eq.s57d for fN2
=Q̃N1,N2

+,L1,L2,L2 with
n=N2, L=L2, M =N1, and Tj given by Eq.s62d. The value offL+1 was found from numerical
analysis to be

Q̃N1,L2+1
+,L1,L2,L2 =

sL1 + L2 + 1d!sN1 − L2 − 2d!
2sL1 − L2 − 1d!sN1 − L1 − 1d!

. s70d
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3. Case l =L1

It follows from Eq.s31d that the constantK in Eq. s51d is equal to zero, so we can use Eq.s55d
for fN1

=Q̃N1,N2

+,L1,L2,L1 with n=N1, L=L1, M =N2, andTj calculated from Eq.s63d.
One of the two linearly independent solutions of homogenous equations16d is given by Eq.

sA6d of the Appendix withJ=2L1+1,

aN1
= s− 1dN1−L1−1 o

j=0

2L1+1

hjsN1 − L1d j , s71d

wherehj are given by Eq.sA11d and whereh2L1+1=1.
Using Eqs.s33d and s49d we can write Eq.s55d for the case considered as

fn = − an
WL+1

s2L + 1d! o
j=n+1

M+1

Tjaj o
k=n+1

j
s− 1dk−L−1sk + L − 1d!

akak−1sk − L − 1d!
. s72d

This expression is still not entirely satisfactory. We found that there is residual instability forn
close toL+1. To eliminate it we rewrite the double summation in the last equation

fn = − an
WL+1

s2L + 1d! o
k=n+1

M+1
s− 1dk−L−1sk + L − 1d!

akak−1sk − L − 1d! o
j=k

M+1

Tjaj . s73d

The source of instability forn close toL+1 is an interesting identity,

o
j=L+1

M+1

Tjaj = 0. s74d

Therefore, we use this identity in Eq.s73d and rewrite this equation to the form

fn = an
WL+1

s2L + 1d! o
k=n+1

M+1
s− 1dk−L−1sk + L − 1d!

akak−1sk − L − 1d! o
j=L+1

k−1

Tjaj . s75d

This equation is stable for alln from L+1 to M. For n.M, it yields zero as it should.

C. Numerical tests

We tested derived formulas numerically for very large quantum numbers. First we setL1

=16 andL2=14, second we consideredL1=20 andL2=10. We tookN1=50 and variedN2 from
L2+1 to 70 andl from 2 toL2. Then we reversed the role ofL1 andL2 and alsoN1 andN2. These
tests are rather severe; in normal calculation one encounters much more favorable situations. The
formulas were run in double precision arithmetics and compared with the exact solutions of Eqs.
s15d and s16d programmed inMAPLE in the form of the recursive algorithm run in rational arith-
metics. For l ,minsL1,L2d, the hypergeometric functionss24d–s27d were calculated from the
MAPLE subroutine. The numerical stable way of their calculations is given in the Appendix. For
uL1−L2u=2 the relative error of the derived formulas was typically of order 10−15. For the case
uL1−L2u=10 the relative error was typically two orders higher. This shows that numerical stability
of formulas slightly deteriorates with increasing differenceuL1−L2u. However, one can expect that
with increasing difference of the angular momenta of the electrons the contributions of the terms
with large numbers of nodes to the energy is relatively small. Therefore, the achieved numerical
stability is sufficient for all practical purposes.

VI. CONCLUSIONS

In this paper we extended the method of numerically stable calculation of the atomic integrals
suggested in our previous paper1 for the S-states of two-electron atoms to the states of arbitrary
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total angular momenta. Thus, in these two papers the complete solution of the numerically stable
calculation of the atomic integrals is given. In the first paper1 we succeeded in transformation of
the problem of the numerical stable calculation of the atomic integrals to the problem of the
numerical stable solution of the difference equations. In this paper we completed our program by
solving the latter problem in required generality. To achieve this aim we suggested a computa-
tionally stable method for the solution of inhomogenous difference equations that for certain
values of the discrete independent variable become homogenous and in that region are described
by just one of the two linearly independent solutions. The method was applied to the difference
equations appearing in the radial part of the atomic integrals and tested for very large quantum
numbers. These tests show high numerical stability of the suggested method. The stability slightly
decreases with increasing difference of the angular momenta of the electrons.

The method suggested in these two papers can be used for the calculation of the radial part of
the Coulomb interaction between electrons whose orbitals are expanded from the same center.
This covers all atoms and the simplest molecules. The results obtained in these papers can be
directly used for the configuration interaction calculation of the excited states of two electron
atoms. This will be reported elsewhere.

Because of the potential importance of the achieved results it would be desirable to put them
on a rigorous basis. The paper is based on the observation that Eqs.s15d and s16d can be in the
region where they become homogenous described by justone of the two linearly independent
solutions. Although we are certain about this observation, one should seewhyequations behave in
this way. The same applies to our guessess67d, s70d, ands74d, and for Eq.sA17d in the Appendix.

Therefore, we believe that the results achieved in this paper are of some interest from the point
of view of atomic physics as well as pure mathematics.
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APPENDIX

In this appendix we suggest a solution of the homogenous equationss15d ands16d. Since this
solution is given in terms of the hypergeometric functionFsa,b,c,2d we find a particularly useful
form of these functions that can be used also in Eq.s10d.

Let us rewrite homogenous equationss15d and s16d into a general form,

sn − Ldgn+1 − sn + Ldgn−1 − 2sJ − Ldgn = 0. sA1d

This equation is obtained from the original homogenous equations16d,

sn − Ldfn+1 − sn + Ldfn−1 + 2sl + 1dfn = 0, sA2d

by setting eitherfn=gn and J=L− l −1 or fn=s−1dngn and J=L+ l +1. EquationsA1d is obtained
also from homogenous equations15d,

sn − Ldfn+1 − sn + Ldfn−1 − 2l f n = 0, sA3d

by setting eitherfn=gn and J=L+ l or fn=s−1dngn and J=L− l. Due to the selection rules for
Clebsch–Gordan coefficients mentioned after Eq.s5d, the differenceL− l is always even. There-
fore, the parameterJ is odd in the case of Eq.s16d and even in the case of Eq.s15d.

For J,L−1 the solution of Eq.sA1d is given by the hypergeometric function

gn = Fsn − L,− J;− 2L;2d. sA4d

Let us remind the form of the hypergeometric functionFsa,b,c,zd here,
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Fsa,b,c,zd = 1 +
ab

c
z+

asa + 1dbsb + 1d
csc + 1d

z2

2!
+ ¯ . sA5d

It turns out that this form of the hypergeometric functions is useful only fora close to zero, i.e.,
only for n close toL. For largern, a more suitable form is needed.

Since we want to get expression also for the hypergeometric functions appearing in Eq.s10d,
we allow L to be half-integral andn to be half-integral and smaller thanL+1.

We search for the solution of Eq.sA1d in the form of the series

gn = o
j=0

J

hjsn − Ld j . sA6d

Later on, it will be clear why we choose the upper bound of summationJ. The advantage of this
expansion is that the coefficientshj do not change the sign. Therefore, forn larger thanL this way
of calculating the hypergeometric functions is numerically stable and can be used for the hyper-
geometric functions appearing in Eqs.s24d–s27d.

SinceJ must be a non-negative integer, forL= l we obtain only one solution in the formsA6d.
If l ,L, we obtain in this way two linearly independent solutions.

The remaining hypergeometric functions to be calculated are those appearing in Eq.s10d. For
these functions argumenta in the definitionsA5d is always negative. As it is clear from Eq.sA4d
it corresponds to the situation whenn,L. The use of Eq.sA6d is not advantageous in this case,
because for negative value ofn−L we get insA6d the sum of terms with changing signs. Whenn
is close toL, the best way is to calculate the hypergeometric functions from the definitionsA5d.
For n more distant fromL we calculate the hypergeometric functions from the series

gn = o
j=0

J

cjn
j . sA7d

It appears that for evenJ the coefficientscj with odd j equal zero and for oddJ the coefficientscj

with even j equal zero. From this fact it immediately follows that

Fs− n − L,− J;− 2L;2d = s− 1dJFsn − L,− J;− 2L,2d. sA8d

Using this equation we can always raise the value of the parametera over −L.
In the following we first show how to calculate the coefficientshj in the expansionsA6d, then

we calculate the coefficientscj in the expansionsA7d.

Expansion around n =L

We make substitutionN=n−L in Eq. sA1d. Then Eq.sA1d reads

NgN+1 − sN + 2LdgN−1 − 2sJ − LdgN = 0. sA9d

Inserting the expansionsA6d and using the binomial formula we obtain after some manipulation

o
j=0

J Fo
k=0

j S j

k
DNk+1s1 − s− 1d j−kd − 2Lo

k=0

j

Nks− 1d j−k − 2sJ − LdNjGhj = 0. sA10d

Comparing now terms with the same powers ofN we get for the highest powerNJ identically zero.
It means that the coefficienthJ is free for the normalization of the solution. This is the reason why
we chose in Eq.sA6d the upper bound of the summation equal toJ. Going then successively to the
lower powers ofN we obtain recurrence relations for the coefficientshj,

033504-14 Zamastil et al. J. Math. Phys. 46, 033504 ~2005!

Downloaded 17 Oct 2005 to 195.113.33.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



hJ−j

hJ
=

1

jsJ − jd! op=0

j−1
sJ − pd!

s1 + j − pd! F1 − s− 1d j−p−1

2
sJ − jd − Ls1 + j − pds− 1d j−pGhJ−p

hJ
. sA11d

Normalization of the seriessA6d to the hypergeometric function is done by comparing Eqs.sA4d
and sA6d for some value ofn. The best choice isn=L since then we have

1 = hJ
h0

hJ
, sA12d

where we used the identityFs0,−J;−2L ;2d=1. The ratioh0/hJ is calculated from Eq.sA11d.

Expansion around n =0

We proceed along the same lines as in the derivation of recurrence relations for the coeffi-
cientshj. We insert the expansionsA7d into Eq.sA1d, use binomial formula and compare the terms
with the same powers ofn. After some manipulation we obtain

cJ−2p

cJ
=

1

2psJ − 2pd! oj=0

p−1
cJ−2j

cJ

sJ − 2jd!
s2p − 2j + 1d!

fJ − 2p − Ls2p − 2j + 1dg sA13d

for p running from 1 toJ/2 for J even and tosJ−1d /2 for J odd. The coefficientscJ−2p−1 equal
zero.

The coefficientcJ is determined by comparing seriessA7d and the hypergeometric function
sA4d for somen. Settingn=L we obtain

1 = cJo
j=0

J
cj

cJ
Lj , sA14d

where we used the identityFs0,−J;−2L ;2d=1. For practical purposes, however, this form is not
very convenient, since there is a cancellation of large numbers in the sum on the right-hand side.
For this reason the use of seriessA7d is not suitable for calculation of the hypergeometric func-
tions with n comparable or greater thanL. Instead we determine the constantcJ as follows.

For even values ofJ=2P the constantc2P is found by comparing Eqs.sA4d and sA7d for n
=0,

Fs− L,− 2P;− 2L;2d = c2P
c0

c2P
, sA15d

where the ratioc0/c2P is calculated from Eq.sA13d. The values ofFs−L ,−2P;−2L ,2d were found
from the numerical experiments to be

Fs− L,− 2P,− 2L,2d = p
p=0

P−1
2p + 1

2L − 2p − 1
. sA16d

For odd values ofJ=2P+1, comparison of Eqs.sA4d andsA7d yields forn=0 nothing, since both
sides are identically equal to zero. However, the constantc2P+1 can be calculated from remarkable
identity

c2P+1 =
c2P

L − P
sA17d

found by numerical experiments.
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