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On the First Schrodinger Paper on Quantum Mechanics

L. Skala'* V. Kapsa'

Abstract — In his first paper on quantum mechanics, Schrédinger made attempt to derive his
Jamous stationary equation from the Hamilton-Jacobi equation of classical mechanics. The ansatz
he made in the relation between the classical action and the wave function is analyzed and
reformulated in a way consistent with the standard interpretation of quantum mechanics.
Copyright © 2007 Praise Worthy Prize S.r.l. - All vights reserved.
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Nomenclature
H Hamilton function
coordinate
S(q) classical action
E energy
v wave function
V(g) potential energy
e elementary charge
m mass of the electron
x,y,z  coordinates
h Planck konstant
p momentum
i imaginary unit
p momentum operator

I. Introduction

In his first paper on quantum mechanics [1] entitled
"Quantisierung als Eigenwertproblem", Schrédinger
introduced his famous equation and applied it
successfully to the hydrogen atom.

The starting point of his discussion was the time
independent Hamilton-Jacobi equation:

e o

He then introduced a new real function y by the
equation:

S=Kny ©)

where K is a positive constant and obtained a new
equation for y:

(e o

Manuscript received and revised November 2007, accepted December 2007

302

For the hydrogen atom with the potential energy V'=-
¢’/ he derived the following equation:

K\ (oyY (ow) (ow) -
E{(Ej (%) (%) oo

Further, Schrodinger searched for a finite single-
valued real function y=w(x,y,z) with the continuous
second derivatives for which the integral of the left
hand side of Eq. (4) over the whole space is extremal:

SJ - 5]”{2;71“ Wj (%@Z(%ﬂ (5)
HV-E)y }”’xdy"’z"

Performing integration by parts in the last equation
he obtained the result:

oJ oy
—= |0y —dS+
2 Iwﬁn

2 ©)
_“‘J'&//{f—mAJr(E—V)}y/dxdydz =0

Assuming that the first integral over the fixed surface
at infinity equals zero (condition valid for the motion in
a finite volume) he derived the equation:

2

K
-—Ay+Vy=Ey 7
2m

Comparing the energy spectrum of the hydrogen
atom following from this equation and the Bohr theory
Schrédinger obtained K=#. :
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The resulting equation is known now as the
stationary Schrodinger equation. The physical meaning
of y, namely the probability amplitude, was not known
in 1926.

II. Problems

To illustrate problems related to Eq. (2) we consider
first the wave function of a free particle in one
dimension:

v = eipx/h/N (8)

where N is a normalization constant. The motion of a
free particle is not quantized and classical and quantum
mechanics should agree in this case. Equations (2) and
(8) lead to:

S =K(ipx/h—InN) 9

while the definition of the classical action yields:
S= I pdx' = p(x—x;) (10)
Xo

Comparing the x-dependent parts in the last two
equations we see that the relation (2) between S and y
with a real constant K cannot be fulfilled. We can try to
obey Eq. (2) by taking the imaginary constant K=-i.
Then the x-dependent parts of Egs. (9) and (10) are
equal, however, incorrect sign of the kinetic energy
operator in Eq. (7) is obtained. It indicates that relation
(2) between S and y is not suitable.

One could argue that the two cases described above

~cannot be compared since the wave function (8)
describes a free particle that is not localized in the space
while the classical free particle moves along the straight
line trajectory. The plane wave function (8) can be
replaced by a more general wave function describing a
localized wave packet (see also [2]-[8]):

w =SS/ (1n

where S, and S, are real functions and the function y
obeys the normalization condition:

j|y/|2 dxdydz = je—zsz/”dxdydz =1 (12)

For the sake of compatibility with [2]-[4] the minus
sign in front of the S, function is used here. Different
roles of ) and S, in Eq. (11) can be illustrated in the
following way. For $;=0, the wave function y is real
and the mean momentum is equal zero for the functions
obeying the condition |y|*= y*—0 for x,y,z— oo
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() =in [[w (v /ox) dxdydz =
=-in/2 [[[(0y? fox)dsdyaz = (13)

-t [ o

It is seen that the probability density current:

7] " « 1
i=5 (Ve )=l vs a9
mi m

is equal to zero for the real wave function w. These
well-known results show that in order to describe the
motion with a nonzero momentum, the function S; must
be different from zero and w cannot be real. On the
other hand, the function S, gives the probability density
|w|*=exp(-2S,/h) and should not appear in the limit of
classical mechanics.

Discussion given above shows that relation (2)
between the real functions S and w assumed by
Schrodinger cannot be used as the starting point for a
mathematically consistent heuristic transition from the
Hamilton-Jacobi equation to the stationary Schrodinger
equation.

III. From Quantum to Classical
Mechanics

Now we show that the transition from the
Schrodinger equation to the Hamilton-Jacobi equation,
i.e., transition inverse to that discussed by Schrédinger,
can easily be done if Eq. (2) is replaced by Eq. (11).
The stationary Schrédinger equation has the usual form:

~2

p—l//+Vl// Ey , p=-ihV (15)
2m

Now, we multiply this equation by the complex
conjugate function w* and integrate over the whole

space. Taking into account that the momentum operator
is self-adjoint we can then write:

2l [l-inv y* dvdydz + [(v ~ E)|w|* dxdydz = 0 (16)
m
Using Eq. (11) in the last equation we get:

2
j—(V2S1 ) e 25/ dxdydz +
m

2
Y
J‘—(%Z)e_zszmdxdydz + (17)

I(V—E)e‘zsl/hdxaﬁzdz =0
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To perform a transition to the classical mechanics,
we assume that the probability density:

pf =2/ (18)

has very small values everywhere except for the close
vicinity of the classical trajectory r., where it achieves
its maximum and the gradient of S, at ry is equal to
Zero:

VS| =0 (19)

r=ry

In such a case, the probability density can be
replaced by the é-function:

| =5(r-r,) (20)

and the probabilistic character of the theory disappears.
Therefore, the function S, describing the form of the
probability distribution |y|* does not appear in classical
mechanics. We note also that Eq. (20) corresponds to
the limit # —0+ in Eq. (18). Then, the straightforward
use of Egs. (17)-(20) leads to the Hamilton-Jacobi
equation:

E)

0 1)

[VS(rcl )]2 (V-
2m

for the classical action S that can be obtained from S; in
the limit:

S = lim §, 22
h—l>rg+l ( )

IV. From Classical to Quantum
Mechanics

Finally, we discuss the transition from the Hamilton-
Jacobi equation to the Schrédinger equation that can
replace the original Schrodinger discussion. First we
modify Eq. (2) by using the imaginary unit i in the
relation between Sand y:

iS = Kiny 23)
or:
W= eiS/K (24)

where S is the classical action. Classical trajectories
with exact position and momentum measurements are
mathematical abstraction only, and the real description
of physical measurements must take into account their

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved
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probabilistic character. For this reason, we write the
Hamilton-Jacobi equation (21) in the form:

IH{(VS (- E)}?( —r,)dsdydz =0 (25)

in which the integration in the probability space instead
physically unclear integration in Eq. (5) is used. At this
point corresponding to the classical limit, the
probability distribution has the form 8(r-r), where the
variables in the corresponding Hamilton-Jacobi
equation are r. In the following step, we go closer to
quantum mechanics and replace the 3-function by a
very narrow probability distribution exp(-25,/K), where
K>0 is a small constant. Then, the last equation can be
generalized as:

jﬂ[ vs)’ +(V - E)} 250K xdydz =0 (26)

Here, new functions S; and S, describe the motion
close to the classical limit and S, equals S in this limit.
Assuming that the probability distribution exp(-2S,/K)
achieves its maximum at r, we can also presume:

VS,| =0 (27)

r=r,

It is possible to generalize Eq. (26) again:
(VS))" +(VS
m (V8)" +(vS,) +(V - E) | /X dxdydz = 0 (28)

Here, derivatives of both the functions S; and S, are
taken in the same way with a chance to describe
classical as well as probabilistic aspects of the motion.
This generalization means that the kinetic energy is
attributed not only to the motion with V§,#0 leading to
the nonzero probability density current (14) (it can be
denoted as the kinetic energy with respect to the
coordinate system in which the measurement is
performed) but also to cases when V.5;=0 and the form
of the probability distribution |y|*=exp(-25,/K)
characterized by the gradient VS,#0 (kinetic energy
related to the form of the probability distribution). In a
general case, both contributions to the kinetic energy
have to be taken into account. It is seen that a new
function y instead S; and S, can be now introduced:

iS, -8, =Kiny (29)

or:
W= SiSi=5:)/K (30)

International Review of Physics, Vol. I, N. 5



L. Skdla, V. Kapsa

Then, Eq. (28) can be written in terms of the function
w:

. 2
J’j @—-ﬂV—E)MZ dxdydz=0 (31)
m

We note that the imaginary unit in Egs. (29)-(30) is
important from the point of view of transforming the
expression [(VS)(VS))] to |-iKVy[ in the last
equation. Supposing that the operator (—iKV) is self-
adjoint we get:

113 [*%AV”(V“E)W}dxdydz =0 (32

It is seen from this result that we can assume validity
of the equation:

K2
[—————A+V]l//=El// (33)
2m

which, except for the numerical factor K, has the form
of the stationary Schrédinger equation. The value of K
can be found in a similar way as it was one by
Schrédinger, namely, by comparing solutions of the last
equation with known experimental or theoretical results
and concluding that K=h.

V. Conclusions

In our discussion given in the last section, we were
inspired by the original Schrédinger approach and the
transition from the Schrodinger equation to the
Hamilton-Jacobi equation performed in Section III.

Comparing our discussion with that of Schrodinger
we see that the original equation (2) between the
classical action S and the wave function y was replaced
by a more complex relation (29). This relation contains
not only the imaginary unit i but also two new functions
S, and S,. The function S; contains information about
the motion in space and tends to the classical action S'in
the limit #—0+ (see Eq. (22)). The function S, gives the
probability density |y|*=exp(-25,/K) which becomes the
d-function for A—0+ (see Egs. (25)-(28)). This
interpretation of the wave function is a natural way of
describing the probabilistic character of measurements.
In our approach, the probabilistic interpretation of the
wave function is introduced before the Schrodinger
equation is obtained.

One of important points in the above discussion is
the integration over the whole space performed in Eq.
(5). In Eq. (25) and the following equations, we
interpreted it as an integration over probabilities to find
the particle in different parts of the space. Such
probabilistic interpretation of measurements (see also
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[2]-[4]) seems to be physically reasonable, however,
other interpretations like that used by Bohm are also
possible [6]-[7]. On the other hand, our approach does
not indicate that it is necessary to assume that particles
move along trajectories with well-defined positions
obeying the classical equation of motion with a
quantum potential as assumed by Bohm. For this
reason, the standard interpretation of quantum
mechanics has been used here.

Transition from the time-dependent Hamilton-Jacobi
equation to the time-dependent Schrdodinger equation
can be performed in an analogous way and will not be
discussed here. The inverse transition was discussed
e.g.in [2]-[4].

We can conclude that the transition from the time-
independent Hamilton-Jacobi equation to the stationary
Schrodinger equation  discussed above is  not
straightforward and can be made only in a few
successive steps, in which a new concept, namely the
probabilistic description of the motion, is introduced.
Despite the fact that Eq. (2) is not from the point of
view of the present knowledge correct, ideas introduced
by Schrédinger were very fruitful and the celebrated
Schrédinger equation opened a new era in physics.
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