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An explicit analytic expression for the propagator for the coherent motion of excitons in a one-dimensional crystal with one 
impurity is presented and the probability of capturing the exciton by the localized state is calculated. 

The propagation of excitons in molecular crystals has been actively investigated in recent times (see e.g. refs. 
[ 1,2 I). One interesting basic issue is that of the effect of the degree of transport coherence on the character of 
the motion (see refs. [ l-41). Another important step in the direction of more realistic models is the investiga- 
tion of the effect of impurities. Some important results in this respect are known [ 11, however, the so-called 
propagator describing the time and spatial development of the motion has not been known till now. For this 
reason we decided to investigate this problem for a simple model represented by an infinite linear chain with a 
single impurity. The purpose of this work is to provide an analytic expression for the propagator for the coher- 
ent motion in the chain. The expression is analytic, has a simple physical interpretation and can be exploited in 
further calculations (the mean square displacement, quantum yields, and others). We show also that because 
of the existence of the localized state in the chain the exciton does not spread out in the crystal for ~+oo, 
however, it remains partly localized in the neighbourhood of the impurity. 

We assume that the coherent motion of the exciton in the chain with the impurity at the origin is described 
by the time-dependent Schrodinger equation for the site amplitudes c,(t) in the form 

idc,,ldt=c,_, +cn+l , n#O; , idc,,ldt=c_, +tc,,+c, , n=O. (1) 

We assume fi= 1, the nearest-neighbour hopping integral equal to 1 and zero diagonal matrix element of the 
hamiltonian everywhere except for the impurity (E). The key quantity giving the solutions of eqs. (1) is the 
amplitude propagator w,(t), i.e. the solution cn( t) corresponding to the initial excitation at site p= . . . . - 1, 0, 
1 )... 

W,(t) =c,(t) for G(O) =6, . (2) 

The probability to find the exciton at site n is 1 y,(t) I *. 
We first exhibit the result and then show its derivation. The propagator equals 

tg,(t)=( -i)n-PJ,_p(2t)+tanh(y)[sgn(t)e-Y]’n’+Ipl 

Inl+lpl 
exp[ -2itsgn(e) coshyl- ,zo e(Ic)[sgn(e)lkcosh(kv)(-i)kJk(2t) 

> 
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+2tanhy (-i)‘“‘+‘P’+l{sgn(c) sinh[(lnl+lpl)ylU,.,+,,,,,(2te-Y,2t) 

-icosh[(I~l+I~I)yl~~.~+~,~+2(2~e-~,~~)~. (3) 

Here, U, (x, y ) denotes the Lommel function [ 5 ] : 

un(-% Y)=jro( - 1 lj(xiY)“+“J2j+n(Y) 9 (4) 

y is defined by 

ey= ]t(/2+(1+~~/4)“~, (5) 

c(k) = 1 for k= 0 and 2 otherwise, sgn ( E) = 1 for E > 0 and - 1 for e < 0 and J is the Bessel function. Another 
form of eq. (3) which is not, however, suitable for the numerical calculations for large e is 

where the Uj of one argument denote the analytic continuation of the Chebyshev polynomials of the second 
kind defined by the recurrence relations 

Uo(x) = 1 , U,(x)=2x, ~,+,(x)=2x~,(x)-~,-*(x), (7) 

for arbitrary complex argument. 
Eqs. (3) and (6) have a simple physical meaning. The first term on the right-hand side of eq. (3) or (6) is 

the same as in case of a perfect chain without the impurity [ 1 ] and represents the motion of the exciton without 
scattering. The second term results from the scattering on the impurity and, in contrast to the first one, it is not 
translationally invariant. It is a function of I n I + lp I, i.e. the total distance from the initial excitation site p to 
the impurity and from the impurity to site n where the probability to find the exciton is calculated. It can be 
shown that the structure of eq. (6) corresponds to the perturbation expansions of the Dyson equation 

G=G,+G,I’G,+G,I’G,I’G,+... , (8) 

where the role of G, Go and Vin the site representation is played by v/,(t) , ( - i)“-pJn_P( 2t) and S,,&eS( t - t' ) , 
respectively. For example, the Born approximation to w,(t) exact to the first power of E equals 

&*.(t)=( -i)nPJn_p(2t)+~( -i)lnt+lpl+l Uln,+,P1+1(2t, 2t) . (9) 

We see that the Lommel function U in eq. (9) describes the scattered wave in the Born approximation. 
In a periodic crystal without the impurity the exciton spreads out with increasing time in the whole volume 

of the crystal. We show that the motion in the presence of the impurity has a different character. For t-m the 
propagator in the neighbourhood of the impurity is given by the localized state contribution (see below and eq. 
(3)) 

Ynp(t-,oo)=tanh y [sgn(e)e-Y]In1+Iplexp[2it sgn(e) cash r] , 

n, p finite, t-m, and the probability to find the exciton at site n equals 

I~,(t~co)12=[tanhye-Y(tnl+IPI)]2. 

The total probability of the exciton to be captured by the localized state 

~Iyl,(t-roo)~2=tanhye-2Y~P~ 
n 

(10) 

(11) 

(12) 

is less than 1 and approaches 1 for I c I B 1 and p = 0. The effect of the impurity goes down exponentially with 
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Fig. 1. The probability propagator 1 y,(t) 1’ for p=O, n = 0, 1,2, 
3 and e= 1.5 (full line) in comparison with the propagator for 
t = 0 (dashed line) showing the capturing of the exciton by the 
localized state. 

Fig. 2. The probability propagator 1 w,(t) 1’ forp= 1, n = 0, 1,2, 
3 and e= 1.5 (full line) in comparison with the propagator for 
c = 0 (dashed line) showing the decreasing effect of the impurity 
with increasing p. 

increasing 1 n 1 and ]p ( . 
The probability propagator I y,(t) ( ’ is shown for e =O and 1.5, p= 0 and 1 in figs. 1 and 2. We see from fig. 

1 for c = 1.5 that the exciton localized at n = 0 for t = 0 only partly spreads out in the crystal with increasing time. 
We see also (see namely n= 0 and 1) that the probability to find the exciton in the neighbourhood of the 
impurity does not go to zero for large t. The propagators for c = 1.5 and e = 0 have similar wave-like character. 
The oscillations are a little bit quicker for e= 1.5. Fig. 2 shows that the effect of the impurity goes down with 
increasing I p I. The probability propagators are functions of ) c I. 

The derivation of eq. (3) is based on the solution of the stationary Schriidinger equation corresponding to 

eqs. (1) 

EC,, =c,_, +c,,+, , n#O; Ec,,=c_, +EC~+C~, n=O. (130) 

Solving this problem the propagator w,,J t) can be calculated from 

w,(t) = C&%P(E)e-‘E’ , (14) 
E 

where ZE denotes the summation over all states. The fulfilment of eq. (2) follows from the completeness relation 

Y,(O) =gti(E)c,(E) =6, . (15) 

The Green function method usually applied to eqs. (13) yields the transcendent equation for the energies 
and cannot be used to evaluate (14). For this reason we find the explicit analytic solution given below. 

A general solution of the difference equation (13a) can be derived in a standard way [ 61. It has the form 

c,, =Ae’“’ +Be-“* , (16) 

where 6 is given by 
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E=2cos19 

and A and B are constants. Using eq. (13b) we get the symmetric (c, = c-,) 

c!+)=[n(l+ $-&)I-“‘(cos&- &sin]n]t9) 

and antisymmetric ( c, = - c- .) 

CA-) =x-l’* sin ntJ (19) 

solutions. These extended states have the energies in the band of the states 

E=2cos6, tk(O,l~). (20) 

The localized state existing for any e # 0 can be obtained by assuming the imaginary “k-vector” 19 in eq. ( 16) 
and equals 

~,=(tanhy)“*[sgn(c)e-~]I~I . (21) 

!t has the energy 

E=2 sgn(c) cash y 

and is symmetric. 
The derivation of eq. (3) from 

(22) 

~~~(I)=^(c~+)c~+)+c!-)c~-)) exp(-2itcosht9) dr9+c,c, exp[ -2itsgn(e) coshy] 
s 
0 

(23) 

is straightforward but time consuming and we do not give it here. 
We have discussed the one-dimensional case here. As far as the capturing of the exciton by the localized state 

is concerned this assumption is not substantial and can be relaxed. Concluding we point out that the time- 
dependent scattering on impurities arises in a number of contexts so that the analytic solution of the problem 
is of interest not only in the theory of the exciton transport. 

This work was stimulated by the collaboration with Professor V.M. Kenkre form the University of New 
Mexico where one of the authors (L.S.) had the pleasure to work. 
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